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Abstract

Deep cortical surface reconstruction methods have shown promising results in recent
years, reconstructing mesh representations of the cortical surface boundaries with high
accuracy, typically within seconds [101]. However, a critical gap remains: these meth-
ods do not focus on producing intra-subject aligned meshes in longitudinal studies.
For downstream analysis of morphological changes, vertex correspondence – where
the same anatomical location is consistently represented by identical vertices across all
meshes – is crucial. This consistency is key to reducing noise and enabling smooth
interpolation between meshes in both vertex and region-based analysis.

To bridge this gap, we present a new method called V2C-Long, which generates intra-
subject aligned meshes through a novel three-step process. Initially, the surfaces of all
time points of a subject are reconstructed independently, from which a median tem-
plate for the subject is then created. Finally, a dedicated model deforms the template
to the target surfaces, requiring only small adjustments in vertex positions, leading
to highly aligned meshes. Our method builds on the V2C-Flow method, which pro-
duces state-of-the-art meshes in terms of reconstruction accuracy [6], but the general
approach is adaptable to other mesh deformation-based cortical surface reconstruction
methods. Given the lack of related work on this topic, we introduce a set of novel met-
rics to quanitfy the vertex correspondence, most of which are based on the variance of
selected mesh properties across time points. Utilizing these metrics, we rigorously eval-
uate our methods against related mesh deformation methods, including FreeSurfer’s
longitudinal pipeline [75, 74], and show that our method produces meshes with the
best correspondence scores, with a notable margin to other deep learning methods. In
addition, our method significantly reduces the number of self-intersections compared
to V2C-Flow. Based on our metrics, we anticipate that meshes produced by our method
are well suited for downstream analysis, as their alignment is at least on par with, if
not slightly better than the alignment of meshes produced by FreeSurfer’s longitudinal
pipeline, the de facto standard in the field.
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1. Introduction

1.1. Motivation

Recently, deep learning [43] methods in Cortical Surface Reconstruction (CSR) – trans-
forming Magnetic Resonance Imaging (MRI) images into mesh-based cortical bound-
ary representations – have yielded promising results in terms of accuracy and infer-
ence speed [101]. In longitudinal studies, multiple MRI scans of a subject are taken
over time. Many downstream applications based on such longitudinal brain imaging
studies require aligned cortical surface meshes across multiple, intra-subject surfaces to
accurately compare vertex-wise features [39, 64, 56]. Cortical thickness is an example of
such a relevant feature that can be used as an indicator for neurodegenerative diseases,
such as Alzheimer’s Disease (AD) [21, 85]. Unaligned meshes can result in high levels
of noise in longitudinal measurements. In contrast, well-aligned meshes, i.e. meshes
where a specific vertex is located at the same anatomical location in each mesh of a
patient, lead to smoother trajectories of vertex-wise features along the time axis, which
aids downstream analysis.

The de facto standard tool for CSR is FreeSurfer [25], which includes a dedicated
pipeline for longitudinal analysis [48, 75, 76, 74]. However, to align the reconstructed
meshes, FreeSurfer uses a spherical registration method that registers the meshes to a
common space [76]. This process can take multiple hours per MRI image [72].

To the best of the author’s knowledge, no work has investigated longitudinal mesh
alignment in deep CSR methods so far, with only one work discussing general mesh cor-
respondence for deep CSR methods [77]. Because of that, current deep learning-based
methods typically reconstruct the cortical surfaces independently without considering
longitudinal information, and do not aim to produce aligned meshes. For integrating
these methods into longitudinal pipelines, the predicted meshes must thus be aligned
in a post-processing step, for example using FreeSurfer’s spherical registration [27]. Al-
though there have been advances in deep learning-based spherical registration [78, 87,
102], the cortical surfaces still need to be inflated to a sphere first, which requires long
computation times [72] and is prone to introduce errors such as distortions [18].

A subset of the recent deep learning methods use graph convolutions to deform a
template mesh into the target surface [34, 17, 5]. Since the template mesh is shared
across all reconstructions, the outputs of these methods are naturally aligned to some
extent. In particular, the reconstructed surfaces have the same number of vertices and
the same vertex connectivity. Also, due to the deformation process, corresponding
predicted vertices may be located at similar anatomical positions. However, the often-
employed Chamfer loss does not explicitly enforce mesh correspondence.
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1. Introduction

Figure 1.1 shows parts of reconstructed meshes from both FreeSurfer’s longitudi-
nal pipeline and V2C-Flow [6], the method we build upon. The two images on the
right show the predicted meshes of two consecutive scans of a subject each, with the
meshes on top being predicted by V2C-Flow, and the ones on the bottom by longitudi-
nal FreeSurfer. In both cases, the same set of faces has been highlighted in both meshes
to show the alignment of the meshes. It can be seen that the corresponding faces on
the V2C-Flow meshes are in proximity, but do not align perfectly. Related deep CSR
methods have similar problems. On the other hand, the corresponding faces on the
FreeSurfer meshes are much better aligned.

1.2. Contribution

In this thesis, we investigate the problem of longitudinal mesh alignment in deep CSR
methods. Our main goal is to measure and improve the mesh correspondence, specif-
ically in V2C-Flow [6], a state-of-the-art deep CSR method. To this end, our contribu-
tions are:

1. We introduce a new set of metrics to quantify the correspondence between meshes.

2. We present a new method, V2C-Long, that significantly improves mesh correspon-
dence, even outperforming FreeSurfer. In addition, V2C-Long improves the recon-
struction accuracy and reduces the number of self-intersecting faces compared to
V2C-Flow. Our approach can be generalized to various other mesh-deformation
based methods.

3. We perform two extensive ablation studies to investigate the effect of the differ-
ent configurations of V2C-Long. We evaluate a final version of V2C-Long against
related work on three longitudinal datasets. Finally, we show that V2C-Long out-
performs related work in terms of mesh correspondence and lowers the number
of self-intersections compared to V2C-Flow.

1.3. Thesis Outline

This chapter motivates and explains the relevance of longitudinal intra-subject mesh
alignment. The next chapter introduces relevant mathematical and neuroimaging con-
cepts and provides an overview over existing work related to CSR. Chapter 3 introduces
our method, V2C-Long, and explain the training procedure and possible configurations
of the method. Then, the chapter presents and motivates various new evaluation met-
rics used to quantify the extent of mesh misalignment. In Chapter 4, an extensive
overview over the datasets, training and model setup, and evaluation procedures is
given. In particular, the chapter talks about the setup of two ablation studies and a
final comparison of our method to related work. The results of the ablation studies and
comparison with related methods are presented and discussed in Chapter 5. Finally,
Chapter 6 summarizes our findings, discusses potential limitations of the method, and
gives some suggestions for future work.
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1.3. Thesis Outline

(a) Used pial surface section (V2C-Flow
surface depicted).

(b) Extracted V2C-Flow surfaces.

(c) Extracted FreeSurfer longitudinal
pipeline surfaces.

Figure 1.1.: Mesh correspondence visualized on two pial surfaces of two intra-subject
scans taken within 24 hours (TRT s1_01, s1_02). Image (a) highlights the
portion of the pial surface where the submeshes were extracted. Images (b)
and (c) show each the surfaces from both scans in the region with some of
the faces highlighted. The better the highlighted faces overlap, the better
the mesh correspondence. The meshes in (b) were produced by V2C-Flow.
The meshes in (c) were produced by FreeSurfer’s longitudinal pipeline.
FreeSurfer achieves better correspondence than V2C-Flow, but V2C-Flow
meshes are more regular and smooth due to regularization terms in the
loss function.
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2. Background and Related Work

This chapter presents related background knowledge essential for understanding this
work. The first part focuses on the mathematical background, followed by a section
on relevant medical imaging concepts. The third section gives an overview of existing
methods in the field of cortical surface reconstruction. Finally, the last section touches
on existing related work on deep learning in the context of longitudinal studies.

2.1. Mathematical Background

2.1.1. Polygon Meshes, Surfaces, and Graphs

Polygon meshes are a common representation of 3D objects in computer graphics. They
provide an explicit, discrete representation of the surface of an object, which can be
manipulated and rendered efficiently [8]. In this work, our focus is on 2-manifold
polygon meshes with a triangular tessellation of the surface, since the meshes generated
by Vox2Cortex and related methods (cf. Subsection 2.3.3) and our new model use this
type of mesh, due to its flexibility and uniformity.

A mesh is said to be 2-manifold if it is topologically equivalent to a sphere (this
topology is often called S2 [22]). This further implies that the mesh is watertight, i.e., it
does not contain holes [38, p. 25, Definition 2.8]. A triangular tessellation divides the
surface into triangles faces, ensuring that there are no gaps between the faces. This type
of tessellation has the Schläfli symbol (3, 6), which means that the faces are triangular
and each vertex is surrounded by 6 faces [94]. Figure 2.1 shows an example of a mesh
with such a tesselation.

We define this type of mesh as a tuple M = (V, F) where V = {v1, . . . , vn} is the set
of vertices and F is the set of faces. The vertices are typically represented as 3D vectors
vi ∈ R3 and the faces as triplets of vertex ids fk = (i, j, l) ∈ N3 with vi, vj, vl ∈ V. The
edges of the mesh can be derived from the faces, since each face is composed of three
edges. The edges are typically represented as pairs of vertex ids ek = (i, j) ∈ N2 with
vi, vj ∈ V.

Given the vertices and edges, a graph G = (V, E) can be derived from the mesh.
From the previous definitions, we can obtain the following properties of the graph us-
ing Euler’s polyhedral formula [93]:

1. deg(vi) = 6 2. |F| = 2|V| − 4 3. |E| = 3
2 |F|

5



2. Background and Related Work

Figure 2.1.: Example cortical surface mesh with a (3, 6) tessellation.

2.1.2. The Laplace-Beltrami Operator and the Mean Curvature

The Laplace operator ∆ is defined as the divergence of the gradient of a function f [38,
p. 21]:

∆ f = div · ∇ f (x) =
∂2 f
∂x2

1
+

∂2 f
∂x2

2
+

∂2 f
∂x2

3
= tr(Hess( f )) (2.1)

The Laplace-Beltrami operator generalizes the Laplace operator from Euclidean space
to manifolds/curved spaces:

∆M f = divM · ∇M f (2.2)

Intuitively, it measures how much a function changes at a point, given the local
curvature of the manifoldM.

To apply the Laplace-Beltrami operator to a mesh, it first needs to be discretized. This
can be accomplished by approximating the gradient and divergence operators with a
weighted average of neighboring vertices’ function values. The weights are typically
derived from the cotangent of the angles of the faces of the mesh [38, p. 29].

The mean curvature H of a surface is one of many curvature measures used in shape
analysis. It is defined as the average of the principal curvatures of a surface:

H =
κ1 + κ2

2
(2.3)

The principal curvatures κ1 and κ2 are the minimum and maximum curvatures of a
surface at a given point.

6



2.1. Mathematical Background

The mean curvature can also be expressed using the normal vector n⃗ of the surface:

H =
1
2

divMn⃗ (2.4)

Similar to the Laplace-Beltrami operator, the mean curvature can be discretized by
weighted averaging of neighboring normal vectors of the mesh vertices.

The discretized mean curvature is prone to outliers and is often smoothed by itera-
tively applying a weighted averaging of neighboring vertex function values.

2.1.3. Image Registration

Image registration is the process of aligning a set of images (referred to as moving
images) to a common space using a reference image (called fixed image). It is a common
task in medical image analysis, necessary for comparing images of different patients or
for longitudinal comparisons of the same patient.

Image registration can be divided into three types, based on the transformation
used. Each type can be used depending on requirements such as speed and distance-
preservation.

1. Affine Registration: The transformation model is affine. It consists of a rotation,
a translation and a scaling.

2. Rigid Registration: The transformation model is a special case of affine registra-
tion where the scaling is fixed to 1, which means that distances are preserved.

3. Non-rigid Registration: The transformation model is non-linear and can model
more complex transformations.

Many medical imaging tools and libraries ship with implementations of image regis-
tration algorithms, such as FreeSurfer (see Subsection 2.3.1), NiftyReg [61] and ANTs [3].

Since we work with 3D images in this thesis, these transformations operate on voxels,
which are the 3D equivalent of pixels. However, the transformation obtained from reg-
istering 3D Magnetic Resonance Imaging (MRI) images can also be applied to cortical
meshes (as long as the coordinate systems match), allowing us to consistently align
meshes with the underlying images.

A commonly used reference image is the MNI152 template, which is a reference image
of a human brain that is commonly used in brain imaging research [24]. In this work,
we use the 1-millimeter version of the template, which means that each voxel spans a
volume of 1mm3. The resulting coordinate space is called MNI152 space.

7



2. Background and Related Work

2.2. Medical Imaging Background

2.2.1. Cortical Surfaces

The cerebral cortex is a large, tightly folded region of the cerebrum responsible for
higher cognitive functions [7]. It is subdivided into left and right hemispheres by the
cerebral fissure. Because the cerebral cortex is located at the outer layer of the brain, it
is surrounded by the Cerebrospinal Fluid (CSF), a colorless fluid that typically appears
black on T1-weighted MRI images. The outer layer of the cerebral cortex consists of
gray matter, while the inner region of the cortex consists of white matter.

Two types of boundaries are commonly used in the context of cortical thickness,
which is defined as the distance between them:

1. The pial surface that separates the outer CSF from the gray matter.

2. The white (matter) surface that separates the gray matter from the white matter.

These surfaces exist for both hemispheres and are depicted in Figure 2.2. Conse-
quently, there are four total surfaces that are typically used for thickness estimation:
the left/right pial surface and the left/right white matter surface. In this work, how-
ever, we will focus on the right hemisphere only.

(a) Pial surface (b) White matter surface

(c) Both surfaces (d) Original image

Figure 2.2.: Sagittal slice view of the cortex highlighting the two types of surfaces. (a)
Pial surface depicted in green. (b) White surface in blue. (c) Both surfaces,
showcasing the gray matter sandwiched between them. (d) The original
MRI from [52]. The surfaces were extracted using FreeSurfer v.7.2 [28, 25].

8



2.2. Medical Imaging Background

2.2.2. Brain Parcellations

The term brain parcellation refers to a process by which the cerebral cortex is divided
into regions (called parcels or regions of interest) based on certain characteristics, often
related to higher-level function or geometry. The specific set of regions is typically
defined by a brain atlas, which is a collection of anatomical labels that are assigned to
each region.

Commonly used atlases are the Desikan-Killiany atlas [19], and the Destrieux at-
las [20]. The Desikan-Killiany atlas contains 34 regions per hemisphere, while the
Destrieux atlas contains 74 regions per hemisphere. Both are shown in Figure 2.3.

(a) Destrieux atlas - white surface (b) Destrieux atlas - pial surface

(c) Desikan-Killiany atlas - white surface (d) Desikan-Killiany atlas - pial surface

Figure 2.3.: Destrieux vs. Desikan-Killiany atlas mapped to the white and pial surface.
The images were rendered using MNE-Python v1.6.0 [32]

2.2.3. Cortical Thickness Estimation

The thickness of the human cerebral cortex is of great interest in neuroimaging research,
as changes in it are closely related to neurodegenerative diseases such as AD [44, 69].
On average, it is approximately 2.5 mm thick and its thickness can vary widely between
cortical regions [26]. The goal of Cortical Thickness Estimation (CTE) is to estimate the
cortical thickness of the cerebral cortex from MRI images.

For accurate tracking of sub-millimeter cortical thickness changes, mesh-based rep-
resentations of the cortex are required, as these changes are well below the typical 1
mm resolution of voxel-based images. In this work, we define cortical thickness as
the distance between the white matter and pial surface and compute it vertex-wise by
measuring the distance between each white matter vertex and the pial mesh.

9



2. Background and Related Work

2.2.4. Cross-Sectional and Longitudinal Studies

Cross-sectional studies are studies that are conducted at a single point in time providing
a snapshot of a population at that time. Often, a group of subjects with a specific
condition is compared to a healthy control group in order to find differences between
them [36]. For example, the cortical thickness of a group of patients with Alzheimer’s
Disease (AD) may be compared to the cortical thickness of a control group of healthy
subjects at a single point in time, as in [44].

Longitudinal studies, on the other hand, are conducted over a longer period of time,
often several years. The same group of subjects is examined at multiple points in time,
offering insight into the development of their brains or the progression of a disease. In
the context of CTE, longitudinal studies look into the progression of cortical atrophy
over time [80, 89, 1, 81]. Because patients are scanned multiple times over a period of
time, a typical longitudinal dataset contains multiple MRI images for each patient. In
this work, we refer to these images and the time at which they were acquired as time
points starting with time point 1, which is the first scan of a patient (often called baseline
scan) and then counting upward for each subsequent scan of the patient (often called
follow-up scans).

2.3. Cortical Surface Reconstruction

The goal of CSR is to generate a three-dimensional, mesh-based representation of the
cortical surface from a voxel-based MRI image. Having a mesh-based representation
of the cortex allows for a more detailed analysis of the cortical surface compared to
voxel-based representations. For example, cortical thickness, the degree of folding, and
overall connectivity can be computed more accurately [18].

Traditionally, CSR is performed using hand-crafted statistical algorithms, which often
involve time-consuming feature engineering and parameter tuning. In addition, due
to their long computation times, these algorithms may not be suitable for large-scale
studies [72]. In recent years, deep learning has been applied to CSR and has shown
promising results in both inference speed and reconstruction accuracy [101]. In the
following, we give an overview of relevant methods for CSR.

2.3.1. FreeSurfer

Overview

FreeSurfer [25] is currently the most widely used software-based tool for CSR and is the
de facto standard in the field. It consists of different tools that can be used to perform
various tasks related to CSR and CTE.

Typically, these tools are chained together in a pipeline that performs all necessary
steps to generate cortical surfaces from an MRI image. Each pipeline step reads a
set of relevant input files and produces a set of output files. For example, the spher-

10



2.3. Cortical Surface Reconstruction

ical registration command (called mris_register) reads the inflated surfaces called
lh.sphere and rh.sphere and produces the registered surfaces lh.sphere.reg and
rh.sphere.reg.

Cross-Sectional Processing

The cross-sectional processing pipeline (the recon-all pipeline) consists among other
things of the following stages [71]:

• Image Normalization: There are several steps to normalize the image, such as
intensity normalization, image registration, bias field correction, and skull strip-
ping.

• Tissue Segmentation: The normalized image voxels are classified into different
tissue types.

• WM Cortical Surface Reconstruction: The white matter surface is reconstructed
using a combination of the segmentation results, tessellation and topology correc-
tion.

• WM Spherical Registration: The white matter surface is inflated to a sphere and
registered to a common space using spherical registration.

• WM Surface Parcellation: The surface is parcellated using a brain atlas (cf. Sub-
section 2.2.2).

• Pial Surface Reconstruction: The pial surface is reconstructed using information
from the white matter surface and the image.

• Thickness Measurements and Parcellation Statistics: The cortical thickness and
other statistics are calculated.

The cortical thickness estimates computed by FreeSurfer are based on the distance
between the pial and white matter surfaces. In a validation study, Cardinale et al. [9]
compared FreeSurfer’s cortical thickness estimates to in-vivo histologic measurements
They found that FreeSurfer’s closely matched the histologic data, with a difference in
mean thickness of only 0.02 mm.

Longitudinal Processing

For longitudinal analysis, FreeSurfer provides a special longitudinal pipeline that re-
constructs the surfaces of multiple time points of a patient using information from all
time points to improve reconstruction accuracy, reduce processing variability, and avoid
over-regularization [76]. As a by-product, the reconstructed meshes have a higher cor-
respondence across time points, meaning they have the same number of vertices and
the same vertex connectivity and are generally better aligned (cf. Figure 1.1).
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The longitudinal pipeline consists of the following stages [48]:

• Base Template Creation: The intensity-normalized images of each of the patient’s
time points are registered and averaged to create an unbiased patient base tem-
plate. The median of the intensities of the images is used for averaging [76]. This
average image is then processed using the standard recon-all pipeline to create
cortical surfaces and other files.

• Longitudinal Processing of Time Points: A modified version of the recon-all
pipeline is used to process each time point of the patient. Some operations are
modified to use output from the base template creation step. In particular, the
cortical surfaces are initialized using the base template surfaces. In addition, the
target surface for the spherical registration step is the base template surface.

The algorithms used in FreeSurfer’s longitudinal pipeline are described in detail
in [75, 74, 76]. One of the main features of the pipeline is the creation of an unbiased
patient template that avoids bias in both registration and in algorithm initialization [74].

Longitudinal Analysis

FreeSurfer includes several ways to perform statistical analysis on the data extracted
from the longitudinal pipeline. The most advanced tool offered by FreeSurfer is a
Matlab library for LinearMixedEffects models [49, 4], which has been used in multiple
studies to investigate the effects of cortical thinning [31, 23].

The fsaverage Subject

The fsaverage subject is a special subject that is included with FreeSurfer. It was created
by averaging the cortical surfaces of 40 subjects [86]. FreeSurfer also provides a par-
cellation for the fsaverage subject, which maps each vertex of the fsaverage subject to a
region of the Desikan-Killiany atlas and the Destrieux atlas (cf. Subsection 2.2.2). It is
commonly used as a reference subject for registration or for visualization [37, 96].

2.3.2. Deep Cortical Surface Reconstruction Methods

CNNs have successfully solved many computer vision tasks, due to the widespread
availability of large datasets and the increased computational power of GPUs [43]. Ar-
chitectures such as U-Nets [79] have been used to solve a wide range of segmentation
tasks in medical imaging [46]. Based on this, several deep learning methods for CSR
have been proposed in recent years. Since there is little ground truth data available
for training, most of these methods use synthetic data generated from FreeSurfer’s
recon-all pipeline [101] (cf. Subsection 2.3.1).

Deep CSR methods can be roughly divided into three categories: voxel-based, im-
plicit surface-based and explicit mesh-based methods. In the following, we give an
overview of these methods.
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Voxel-Based Methods

In voxel-based methods, the output of a segmentation network is directly converted
into a mesh using a marching cubes or similar algorithm, which can often be im-
plemented in an efficient way [45, 50]. However, marching cubes reconstructions
are known to be prone to artifacts and topology errors that require expensive post-
processing to fix [5, 88]. In addition, the accuracy of the reconstruction is limited by the
resolution of the input image. An example of a voxel-based CSR method can be found
in [73].

Implicit Surface-Based Methods

Implicit surface-based methods represent the cortical surface as a Signed Distance Func-
tion (SDF) [97, 59] which is a function that maps any point in space to a signed distance
from the surface. To obtain an explicit mesh from the SDF, which may be needed for
downstream tasks, the SDF must be converted using specialized algorithms, such as
marching cubes. These types of algorithms often lead to similar problems as with the
voxel-based methods [5]. Examples of methods using implicit surfaces are SurfNN [88],
DeepCSR [73], PialNN [54] and SegRecon [88].

Explicit Mesh-Based Methods

Explicit mesh-based methods represent the cortical surface as a mesh and use a neural
network, typically based on graph convolutions, to deform a template mesh into the
target mesh. These methods typically produce smoother meshes than voxel-based and
implicit surface-based methods, and preserve the topology of the template mesh, but
suffer from self-intersecting faces. Another advantage of template deformation is that
the resulting meshes have the same number of vertices and the same vertex connectivity
as the template mesh, which allows for vertex-to-vertex comparison between meshes.

Voxel2Mesh [95] is an early example of this approach, where a spherical template
mesh is deformed into the target mesh, although it does not focus on cortical surfaces.
Topofit [34] is another example of a mesh-based method that uses a template mesh and
a set of features extracted from the MRI image to deform the template mesh into the
target mesh. Topofit is shipped with FreeSurfer and can be conveniently integrated
into its pipeline [90]. Vox2Cortex and its variants (cf. Subsection 2.3.3), which will be
discussed in the next section, are other examples of explicit mesh-based methods.

Diffeomorphic Deformation Fields

A common approach to mesh-based CSR is to model a deformation field that trans-
forms a template mesh into the target mesh. A special category of deformation fields
are diffeomorphic deformation fields, which are bijective and smooth [53]. These diffeo-
morphic deformation fields provide theoretical guarantees that the transformed mesh is
topologically equivalent to the template mesh and contains no self-intersecting faces [42,
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Theorem 3.1.]. Multiple deep CSR methods use diffeomorphic deformation fields to de-
form a template mesh into the target mesh by integrating a neural ordinary differential
equation [10]. Examples of these methods are CortexODE [53], CorticalFlow++ [17]
and DD-SWD [41].

CortexODE uses a hybrid mesh representation. It starts by constructing an SDF from
an initial segmentation to estimate an explicit template mesh. This template mesh is
then deformed into a white matter surface using a diffeomorphic deformation field. In
a final step, the white matter surface is deformed into a pial surface using a second
diffeomorphic deformation field [53]. Both the CortexODE and DD-SWD authors re-
port that CortexODE is the leading model in terms of reconstruction accuracy (ASSD
scores) [41, 53], and Bongratz, Rickmann, and Wachinger [6] report that it is on par
with V2C-Flow.

CorticalFlow++ is another explicit mesh deformation method that instead of deform-
ing vertices directly, learns a diffeomorphic deformation field in image space that trans-
forms the template mesh into the target mesh [17, 42]. The deformation is guided by a
set of features extracted from the MRI image by a U-Net.

Although there exist theoretical guarantees, because of discretization, limited mesh
resolution, and the usage of the Chamfer loss, the resulting meshes of CortexODE
and CorticalFlow++ still contain self-intersecting faces, although significantly less than
Vox2Cortex [41, 53]. DD-SWD, on the other hand, uses probability measures to repre-
sent the meshes and the sliced Wasserstein distance [68] as a loss function, resulting in
meshes with almost no self-intersecting faces (less than 10−4%) [41].

2.3.3. Vox2Cortex, V2C-Flow and V2CC

Vox2Cortex

Vox2Cortex (V2C) is a deep learning method for CSR that was first introduced by Bon-
gratz et al. [5]. The proposed method uses a U-Net architecture [79] to segment an
input MRI image into different tissue types. Additionally, a set of template meshes are
deformed using graph convolutions into the pial and white matter surfaces for both
hemispheres. The latent U-Net features are interpolated to the mesh vertices and used
to guide the graph convolutions.

The model is trained using a combination of a segmentation loss and a mesh recon-
struction loss. The mesh reconstruction loss includes regularization terms and a modi-
fied Chamfer distance [5]. The ground truth segmentations and meshes are generated
using FreeSurfer’s cross-sectional reconstruction pipeline.

The template meshes used as input are generated by iteratively applying a Laplacian
smoothing operation to the vertex positions of randomly chosen FreeSurfer surfaces.
Each template mesh contains approximately 168,000 vertices, making the model com-
putationally expensive to train and use.

The meshes produced by the model achieved state-of-the-art performance in terms
of accuracy and computation time compared to other methods at the time of publica-
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tion [5]. However, the generated meshes contain self-intersecting faces which can be
removed in a post-processing step using mesh repair tools such as MeshFix [60].

Bongratz et al. also show that the meshes produced by the model have a higher recon-
struction consistency than other methods, including FreeSurfer, when reconstructing
MRI images of the same subject acquired within a short period of time [5].

V2C-Flow

V2C-Flow is an extension of V2C introduced by Bongratz, Rickmann, and Wachinger
[6]. It models the deformation of the template meshes as a continuous flow field,
computed using blocks of neural ordinary differential equations [10]. Instead of us-
ing a random, smoothed FreeSurfer surface as input, the surfaces from the fsaverage
FreeSurfer subject are taken, which allows for easier integration of the model into
existing FreeSurfer pipelines and automatically yields the parcellation labels for the
predictions. V2C-Flow predictions achieve better ASSD and Hausdorff distance scores
(cf. Subsection 4.6.2) on most surfaces than the original V2C model and other state-of-
the-art methods [6].

V2CC

Another extension of Vox2Cortex is V2CC, which was introduced by the same authors
as V2C-Flow in [77]. The model architecture used by V2CC is very similar to that used
in Vox2Cortex. As in V2C-Flow, the template meshes are smoothed fsaverage FreeSurfer
meshes. In addition, the authors evaluate their method with FreeSurfer’s fsaverage6
meshes, which are significantly smaller than the fsaverage meshes (40,962 vs 163,842
respectively) and therefore computationally more efficient. V2CC introduces a new
loss function which is based on a vertex-wise L1 distance between the predicted mesh
and a resampled ground truth mesh. Resampling is necessary, because the meshes
produced by FreeSurfer’s cross-section reconstruction pipeline do not have the same
number of vertices.

Given fsaverage’s vertex-to-parcellation label mapping, V2CC predictions achieve a
significantly better parcellation label overlap when computing a DICE score against
the FreeSurfer ground truth compared to other mesh deformation methods such as
Vox2Cortex and CorticalFlow++ [77]. Furthermore, V2CC meshes have a lower root
mean square deviation of the vertex positions for intra-subject predictions in scans
from a longitudinal test-retest study [55] (cf. Section 4.1) compared to Vox2Cortex and
CorticalFlow++. This indicates that meshes generated by V2CC are more aligned across
time points than meshes generated by previous methods. However, the V2CC pial sur-
face meshes contain on average more self-intersecting faces than those generated by
Vox2Cortex and CorticalFlow++ [77]. Since V2CC is, to the best of our knowledge, the
only deep CSR method directly targeting mesh correspondence, it is an important base-
line for our work and will be compared to our final method (cf. Subsection 4.5.4).
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Figures 2.4 and 2.5 show the different models and their inputs and outputs. An
asterisk (H) marks meshes that contain the same number of vertices and have the same
vertex connectivity. This allows for a direct vertex-to-vertex comparison between the
meshes. However, as shown in Figure 1.1, the meshes produced by V2C-like models
are not aligned sufficiently for precise vertex-wise comparison.

Segmentation U-Net

GNN blocks

smooth templates mesh predictions

MRI scan segmentation
prediction

Vox2Cortex

FreeSurfer (silver) ground truth

modified
chamfer loss

regularization
loss

cross-entropy
loss

Figure 2.4.: Vox2Cortex model. The model takes a 3D MRI image as input and can
predict pial and white surfaces simultaneously. Vox2Cortex uses a fixed
set of four GCN blocks to deform the template mesh. H: Meshes marked
with an asterisk contain the same number of vertices and the same vertex
connectivity.

2.4. Deep Learning in Longitudinal Neuroimaging

There is little literature on deep learning methods specifically focused on longitudinal
neuroimaging data. Ouyang et al. [65] use a self-supervised approach to learn a la-
tent space of longitudinal MRI images called Longitudinal Neighborhood Embedding,
where trajectories in the latent space represent morphological changes in the brain. This
is done through a combination of contrastive learning and a similarity score inspired
by pedestrian trajectory prediction. The embeddings are then shown to lead to better
results in downstream tasks.

Liu et al. [47] use an explicit mesh deformation approach to predict missing infant
scans from longitudinal datasets. This is achieved by creating local geodesic coordinate
grids with uniform, interpolated virtual vertices, and defining convolution operations
on them. These convolutions are then used to predict vertex-wise growth trajectories
that can be used to determine the pial and white surface at the next time point. The
model is trained using a combination of a vertex-wise L2 loss and a cortical thickness
loss. They show that the model outperforms a linear affine transformation model.
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Segmentation U-Net

Mesh Deformation Flow

fsaverage
smooth templates mesh predictions

MRI scan segmentation
prediction

V2C-Flow

FreeSurfer (silver) ground truthFreeSurfer's fsaverage meshes

Laplacian
smoothing

modified
chamfer loss

regularization
loss

cross-entropy
loss

Segmentation U-Net

GNN blocks
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smooth templates mesh predictions

MRI scan segmentation
prediction

V2CC

FreeSurfer (silver) ground truth
resampling

against fsaverage resampled ground truthFreeSurfer's fsaverage meshes
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smoothing
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regularization
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Figure 2.5.: V2C-Flow and V2CC models. The V2C-Flow model uses blocks of contin-
uous flow fields while the V2CC model uses a vertex-wise L1 loss against
resampled ground truth meshes. H: Meshes marked with an asterisk con-
tain the same number of vertices and the same vertex connectivity.
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3.1. Overview of V2C-Long

The main idea behind our method is to leverage longitudinal information by replac-
ing the static templates in previous V2C variants with a patient-specific and potentially
time point-specific mesh generated by another V2C-style model (the Template Generation
Model (TGM)). This significantly shortens the deformations needed to transform the
template to the target mesh, which we hypothesize results in better vertex/mesh corre-
spondence between the template and the prediction. In addition, the final model can
incorporate patient-specific longitudinal information as additional input to the model,
including features extracted from the template generation process. This is possible
because we use V2C-Flow [6] as the underlying model on which our method is built
which can be easily modified to accept additional input with each vertex. We call this
final model V2C-Long.

The complete process behind this model requires three separate steps:

1. Template Generation: The necessary templates are generated from the Template
Generation Model (TGM) (a V2C-Flow model) and a static input mesh.

2. Pairing Generation: Template-target time point pairs are generated for each pa-
tient based on a pairing mode.

3. Training and Inference: The final model predicts the target mesh with the respec-
tive individual input template. The predicted mesh contains correspondences to
the template mesh.

All of these steps are performed separately, which means that the TGM is trained
independently of V2C-Long. Each step is described in more detail below.

3.1.1. Template Generation

An important property of the templates for the V2C-Long model is that the number
of vertices and their connectivity remain the same for all templates used in the final
model. This is necessary because the final V2C-Long model outputs meshes with the
same number of vertices and connectivity as the input template meshes. The shared
vertex connectivity and vertex number are fundamental requirements for vertex corre-
spondence.
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One way to achieve this is to run a mesh-deformation Cortical Surface Reconstruction
(CSR) method on a single, static template mesh and predict meshes for each MRI scan
in the dataset. In this work, a V2C-Flow (cf. Subsection 2.3.3) model is used, as it
predicts more accurate meshes than Vox2Cortex [6] and allows for vertex-wise addition
of additional input features. The template generation process is illustrated in Figure 3.1.

In addition, inspired by Reuter and Fischl [74], median and mean patient templates
are derived from the generated templates. We compute these templates by patient-
wise averaging the vertices of the registered meshes. No additional registration is
performed.

Segmentation U-Net

Mesh Deformation Flow

Template Generation Model
fsaverage

smooth template

3D MRI for each
scan in dataset

segmentation for each
scan in dataset

template for each scan
in dataset

input
one by one

output
one by one

output
one by one

(V2C-Flow)

Figure 3.1.: Template generation process. The Template Generation Model (TGM)
is trained by deforming the same, static template as in the V2C-Flow
method [6] and predicts a mesh for each MRI scan in the dataset (including
all splits). The predicted meshes are then used as templates for the final,
V2C-Long model.

3.1.2. Pairing Generation

FIRST/MEDIAN/MEAN Mode

In the FIRST/MEDIAN/MEAN modes, the template used per patient remains constant
across all scans of the patient. The template is either the template mesh correspond-
ing to the first scan of the patient (FIRST) or the mean/median mesh of the patient
calculated by taking the vertex-wise mean/median coordinates of all the templates for
all the scans of the patient (MEAN/MEDIAN). Since the template is shared across all
scans of the patient, the vertex displacements learned by the model start from the same
set of vertices and which results in in strong vertex correspondence across all final pre-
dictions of a patient. However, the FIRST mode may be biased toward the first time
point, and the MEDIAN/MEAN modes may be biased toward the middle.
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PREV/PREV_CHAIN Mode

In the PREV and PREV_CHAIN modes, the template used for a scan is a mesh pre-
dicted for previous scan/time point of the patient. As a result, the first time point is
not predicted by the final model and instead, the first template mesh can be interpreted
as the first prediction. The exact input mesh used in later steps differs depending on
the mode: In PREV mode, the input mesh used for each prediction is the template
mesh generated by the TGM. This means that the input vertices do not correspond
well across the predictions, resulting in weak vertex correspondence between the pre-
dicted vertices. In PREV_CHAIN mode, however, the input mesh used is the actual
mesh prediction of the previous time point. This leads to a chain of predictions where
each prediction is based on the previous one, starting with the first mesh generated
by the TGM. In this mode, the model actually learns the trajectory of the mesh over
multiple time points which might lead to strong vertex correspondence across all of a
patient’s predictions. However, the variance in vertex positions may accumulate over
time, which could also weaken the correspondences over multiple time points.

NxN/NxN_SORTED Mode

The NxN and NxN_SORTED modes are special in that they do not use a single template
mesh per time point, but instead generate multiple template-target pairings for a sin-
gle time point. The NxN mode generates all possible combinations of template-target
pairings, while the NxN_SORTED mode only generates pairings where the template is
from an earlier or the same time point as the target time point.

This means that only a subset of the predicted meshes share the same template mesh,
which means that the vertex correspondences across all predictions of a patient are
weaker than in the FIRST/MEDIAN/MEAN modes. However, the NxN modes gen-
erate significantly more pairings than the other modes, leading to more training data
for the model which , in turn, may improve training performance. On the other hand,
this makes both training and inference computationally expensive, as for a patient, the
number of pairings grows quadratically with the total number of scans.

The mesh predictions for a given time point can be aggregated to a single mesh using
mean/median vertex positions. This may potentially restore vertex correspondence
across these aggregated meshes and may also lead to more accurate and regular mesh
predictions.

Table 3.1 provides an overview of the different pairing modes including a mathemati-
cal definition of the set of pairings for each mode. Note that we allow different numbers
of total scans per patient in a dataset, which means that the number of pairings gener-
ated by each mode may vary across patients in the dataset. For a visual overview of the
pairing modes, see Figure 3.3, which shows the template-target pairings generated by
each mode for a patient with 4 scans. Figure 3.2 shows the pairing generation process
for a patient with 4 scans and the NxN mode. It also shows the additional features
generated for each pair that can be used for the final V2C-Long model.
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mode pairings # pairings Notes

FIRST {(T1, Ii) | i ∈ {1, . . . , Nscans}} Nscans
MEAN {(Tmean, Ii) | i ∈ {1, . . . , Nscans}} Nscans
MEDIAN {(Tmedian, Ii) | i ∈ {1, . . . , Nscans}} Nscans
PREV {(Ti−1, Ii) | i ∈ {2, . . . , Nscans}} Nscans − 1

PREV_CHAIN {(Pi−1, Ii) | i ∈ {2, . . . , Nscans}} Nscans − 1 P1 ← T1

NxN {(Ti, Ij) | i, j ∈ {1, . . . , Nscans}} N2
scans

NxN_SORTED {(Ti, Ij) | i, j ∈ {1, . . . , Nscans}, i ≤ j} N2scans+Nscans
2

Table 3.1.: Overview of the pairing modes. Nscans: number of time points (varies across
patients). Ti: template for i-th time point of patient, Ii: i-th MRI image, Pi:
prediction of i-th time point of patient.

templates from Template
Generation Model

{T₁, T₂, T₃, T₄}
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Function (here: NxN)

input MRI images
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additional patient
information
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...
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...
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...
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...
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Figure 3.2.: Pairing generation process visualized for a patient with 4 scans and the
NxN mode. Only the first 7 pairings of the 16 total pairings are shown.
After generating the pairings for all patients, they are concatenated to form
the actual dataset for the V2C-Long model.
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Figure 3.3.: Visual overview of the template-scan pairs generated by each mode for a
patient with 4 scans. The numbers represent the ordered time points. The
combinations generated by the mode are highlighted in green. The NxN
and NxN_SORTED modes generate significantly more pairs and the PREV
mode slightly less pairs than the other modes.
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3.1.3. Training and Inference

In the last step, the V2C-Long model is trained using the generated pairings as training
items. This means that for each (template, target) time point pair, we use the generated
template mesh of the template time point as the input together with the MRI scan of
the target time point. The loss is then computed against the ground truth segmentation
and the ground truth mesh of that time point.

We have also extended the architecture of V2C-Flow to optionally attach additional
features to the input vertices of the template. These features can be arbitrary, but in our
setup we evaluate the model with the following:

• Time difference: The (signed) number of months between the template and the
target time point is attached to each vertex as an additional input feature. If
the template is from a later time point than the target, the number of months is
negative. Ideally, the model can use this information to better predict the target
mesh by relating time differences to morphological changes in the brain. For the
MEAN and MEDIAN templates, we assign each template the mean (in both cases)
of all time points of the respective patient.

• TGM features: We extract internal latent features of the Template Generation
Model (TGM) by concatenating the outputs of each graph deformation layer. The
features extracted for the target time point are then added to the template vertices
for the V2C-Long model. Since these features encode the brain anatomy of the
scan, the idea is that they can help the V2C-Long model to better predict the
target mesh. For the MEAN and MEDIAN templates, we use the element-wise
mean and median features across all time points.

For inference, the same pairings are generated as for training, but the ground truth
segmentation and mesh are not used since no loss is computed. In the case of the NxN
and NxN_SORTED modes, there may be multiple predictions for one time point. In
this case, we additionally build an ensemble prediction by taking the mean or median
vertex coordinates of the those predictions. This aggregation operation is applied along
the columns of the NxN and NxN_SORTED plots in Figure 3.3.

A visual overview of the final V2C-Long model is shown in Figure 3.4.

24



3.2. Evaluation Metrics for Mesh Correspondence

Vertex Features

Δmonths: 12

latent features:
np.array(N,128)

...
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➔
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Figure 3.4.: The final V2C-Long model. The generated pairings are used to train the
model, which has the same internal architecture as V2C-Flow (cf. Subsec-
tion 2.3.3). Additional longitudinal information can be added to the tem-
plate vertex features. Since the NxN and NxN_sorted modes generate mul-
tiple predictions per time point, these predictions can additionally be ag-
gregated using mean or median operations on the vertex coordinates.

3.2. Evaluation Metrics for Mesh Correspondence

Due to the lack of literature and existing metrics for mesh correspondence evaluation,
we propose a set of new metrics to evaluate the quality of correspondence between a set
of meshes. These metrics are mostly based on the comparison vertex-wise features, in-
cluding features that depend on the absolute position of the mesh (the Mean Vertex Dis-
tance (VL2) and Longitudinal Parcellation Consistency (ParcF1)) and features that com-
pare the intrinsic shape and structure of the mesh, such as the Cortical Thickness Vari-
ance (ThVar), Mean Curvature Variance (MCVar), and Edge Length Variance (EdgeVar).
As the underlying anatomy of the brain changes over time, a change in these features is
expected. However, we expect the change to be small compared to the one introduced
by the mesh deformation models.

The key difference between these metrics and typical CSR evaluation metrics is that
they do not compare a predicted mesh to a ground truth mesh, but instead compare a
set of mesh predictions to each other. Since we are focusing on longitudinal analysis,
we apply these metrics in a patient-wise manner, which means that we compare the
predictions for a patient internally against each other.

Note that some of these metrics may depend on the scale of the meshes and the total
number of vertices per mesh used in the evaluation. This is important to note, as it may
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limit the comparability of the metrics across different datasets and methods.
Also, note that these metrics have been established before or during the development

of the V2C-Long method and before any of the evaluations presented in Chapter 5.

3.2.1. Variance-Based Correspondence Metrics

The first set of metrics we propose is based on the variance of the vertex or edge-wise
features. This is motivated by the fact that in a realistic setting, morphological changes
in the brain are expected to be smooth, resulting in low variance in the vertex-wise
features over time.

To compute these metrics, we first compute the feature for each vertex or edge in
each mesh. Then, we compute the variance of these features across all meshes for each
vertex or edge. To get a single number, we use the median of these variances across
all vertices or edges. The median is preferred to the mean because features such as the
discrete mean curvature are very sensitive and may lead to outliers that can propagate
into the variance and mean of the variance.

So overall, the typical computational steps are:

1. Feature Computation (for each mesh and vertex/edge)
2. Variance Computation (for all meshes)
3. Median Computation (over all vertices/edges)

In the following, we will describe the first two steps in a formal way. Let NM be the
number of meshes we are comparing and NV and NE be the number of vertices and
edges in the meshes respectively. vi,j is the j-th vertex of the i-th mesh and ei,j is the j-th
edge of the i-th mesh containing a pair of vertex indices.

Edge Length Variance (EdgeVar)

The Edge Length Variance (EdgeVar) metric measures how much the lengths of cor-
responding edges differ between the meshes. The edge length is here defined as the
Euclidean distance between the two vertices of an edge.

A good match of edge lengths makes it likely that the vertices and faces of the meshes
are well aligned. However, relative “shifts” across the mesh or mesh regions may not
be well captured by this metric, since no absolute position information is directly used.

To compute the metric, the length of each edge in each mesh is computed first:

lengthi,j = ∥vi,ei,j(2) − vi,ei,j(1)∥ ∈ RNE (3.1)

The edge lengths are then normalized by the mean edge length in the mesh contain-
ing them, to make the metric more robust to different mesh scales and changes in the
surface area due to morphological ground truth changes:

norm_lengthi,j =
lengthi,j

1
NE

∑NE
k=1 lengthi,k

(3.2)
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Finally, the variance of the normalized edge lengths is computed for each edge across
all meshes:

EdgeVarj =
1

NM

NM

∑
i=1

(norm_lengthi,j − norm_lengthj)
2 (3.3)

with norm_lengthj being the average normalized edge length of the j-th edge across

all meshes ( 1
NM

∑NM
i=1 norm_lengthi,j).

Cortical Thickness Variance (ThVar)

The variance of cortical thickness values is a metric that measures how much the cortical
thickness differs between the mesh predictions. Since the cortical thickness is of general
interest for downstream analysis, this metric is particularly important for longitudinal
analysis. Low variance values indicate a smoothness in the cortical thickness across the
meshes, which is desirable for these downstream applications. Note that the cortical
thickness values also depend on the scale of the coordinate system used.

To compute the variance of cortical thickness, we need to distinguish between white
matter and pial surfaces. Instead of computing the metrics separately for both meshes,
we compute the metric only for the white matter vertices. The thickness at each white
matter vertex is computed as the distance to the pial surface (point-to-face):

thicknessi,j = d(vi,j, Mpial
i ) (3.4)

Next, the variances of these thickness values at each vertex across all meshes are
calculated:

ThVarj =
1

NM

NM

∑
i=1

(thicknessi,j − thicknessj)
2 (3.5)

where thicknessj is the average thickness of the j-th vertex across all meshes
( 1

NM
∑NM

i=1 thicknessi,j).

Mean Curvature Variance (MCVar)

The Mean Curvature Variance (MCVar) metric (cf. Subsection 2.1.2) provides a more ge-
ometric view of the mesh correspondence than the previous metrics. This metric can be
particularly useful for evaluating the correspondence in the densely-folded areas of the
cortex containing gyri and sulci, where there are large regional variations in curvature.
High vertex correspondence in these regions is important as thickness measurements
are very sensitive to small displacements in these regions. Like the cortical thickness,
the mean curvature depends on the scale of the coordinate system used.

For the metric, we compute the discrete mean curvature at each vertex of each mesh
using a combination of a cotangent Laplacian and the normal vector of each neighbor-
ing face of a vertex. Note that no smoothing is applied, but the median should reduce
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the effect of outliers, however. This also makes the computation more efficient. The
exact algorithm used can be found in the source code of PyCortex 1.2.4 [14]. Let Hi,j
be the discrete mean curvature at the j-th vertex of the i-th mesh computed in this way.
The variance of the discrete mean curvature is then computed as:

MCVarj =
1

NM

NM

∑
i=1

(Hi,j − H j)
2 (3.6)

where H j is the average mean curvature of the j-th vertex across all meshes ( 1
NM

∑NM
i=1 Hi,j).

3.2.2. Mean Vertex Distance (VL2)

For the Mean Vertex Distance (VL2) metric, we compute the Euclidean distance between
each vertex and the centroid of all corresponding vertices in all meshes. The vertex
distance is a very direct metric for evaluation of vertex correspondence. In particular, it
is useful for evaluating reconstructions of the same brain anatomy, as is the case in the
test-retest dataset (cf. Section 4.1), where the reconstructed meshes should be as similar
as possible due to a short time interval between the scans.

To compute the metric, we first compute the distance between each vertex and the
centroid of the corresponding vertices in all meshes:

VertDisti,j = ∥vi,j − vj∥ (3.7)

where vj is the centroid of the j-th vertex across all meshes computed as the coordinate-
wise average ( 1

NM
∑NM

i=1 vi,j). Then, we take the average over all vertices and all meshes
to get a single number per patient/set of meshes:

VL2 =
1

NMNV

NM

∑
i=1

NV

∑
j=1

VertDisti,j (3.8)

Note that no median or variance is used in this metric.

3.2.3. Longitudinal Parcellation Consistency (ParcF1)

The Longitudinal Parcellation Consistency (ParcF1) is a metric that evaluates whether
nearby vertices share the same parcellation label. This allows us to see how well the
cortical regions overlap between the meshes.

To compute the metric, for each pair of meshes Mi and Mk where i ̸= k, the par-
cellation label of each vertex in Mi is compared to the parcellation label of the closest
vertex in Mk. Based on these labels of the vertices in Mi and their respective closest
vertex in Mk, a weighted F1-score is computed (weighted by the number of instances
of each label in the fsaverage parcellation). If a zero division occurs, e.g., if a label is
never present in the closest vertices, that label’s weight is set to zero for the averaging.
The exact algorithm used to compute the F1-score can be found in the source code of

28



3.2. Evaluation Metrics for Mesh Correspondence

scikit-learn 1.3.2 [84]. Of the NM ∗ (NM − 1) F1-scores, the median is taken as the final
metric value.

Since in our case the meshes are derived from the fsaverage template, we can use the
parcellation maps provided by FreeSurfer directly with the meshes (cf. Subsection 2.3.1).
For this metric, we decided to use the Destrieux parcellation, because it is more fine-
grained than the Desikan-Killiany parcellation (cf. Subsection 2.2.2).
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In this chapter, we describe the setup used to evaluate different configurations of the
V2C-Long model and to compare it with other methods. Figure A.1 in the appendix
gives a detailed overview over the complete training procedure and evaluation pipeline.

4.1. Datasets

4.1.1. Overview

We use three different datasets to evaluate the V2C-Long model: the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) dataset [36], the test-retest (TRT) dataset [55], and
the Open Access Series of Imaging Studies (OASIS) dataset [40]. The ADNI dataset is
used for training, validation, and testing, while the TRT and OASIS datasets are used as
additional test sets to evaluate the generalization of the methods to unseen datasets. All
these datasets are publicly available and widely used in related work. Table 4.1 gives
an overview of the datasets used in this work and Figure 4.1 shows the distribution of
patients in terms of number of scans per patient.

Due to the large number of scans in the ADNI dataset, we train and evaluate our
model only on the pial and white matter surfaces of the right hemisphere. We expect
the model to behave similarly on the left hemisphere.

dataset #patients #scans avg. #scans per pt.±std. typical TBCS. age range

ADNI 1243 5433 4.37±1.88 6-18 months 55 – 96
TRT 3 120 40.00±0.00 <24 hours 42 – 90
OASIS 100 288 2.88±1.11 1-3 years 26 – 31

Table 4.1.: Overview of the datasets used in this work. TBCS = time between consecu-
tive scans.

Alzheimer's Disease Neuroimaging Initiative (ADNI)

The Alzheimer’s Disease Neuroimaging Initiative is a large, longitudinal study of el-
derly patients, including healthy subjects, subjects diagnosed with Mild Cognitive Im-
pairment (MCI), and subjects diagnosed with AD [36]. The ADNI dataset is the most
commonly used dataset in the deep CSR methods mentioned in this work [41, 103, 53,
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5, 6, 17, 30, 77, 16] and contains longitudinal MRI scans with time information given in
multiples of 6 months since the first scan.

After removal of failed FreeSurfer reconstructions (see Subsection 4.1.2), our dataset
consists of 1243 patients with a total of 5433 scans. The lowest and highest number of
time points per patient are 2 and 13 respectively, with an average of 4.37 time points
per patient (standard deviation: 1.88 time points).

Open Access Series of Imaging Studies-3 (OASIS)

The OASIS-3 dataset is another open access dataset of longitudinal MRI scans and is
part of the OASIS project [40, 58, 57]. It contains MRI scans of both cognitively normal
subjects and subjects diagnosed with AD. The timing information is less precise than
in the ADNI dataset, as only the patient’s age in years at the time of the scan is given.

We use the OASIS dataset as an additional way to test the robustness and generaliza-
tion of the V2C-Long model to unseen datasets. Since we use the OASIS dataset only
for external evaluation, we have reduced the dataset size by randomly selecting 100
patients, resulting in a total of 288 scans. The ages of these patients at the time of their
scans ranges from 42 to 90 years.
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Figure 4.1.: Distribution of total scans per patient in the ADNI and OASIS datasets.

Test-Retest (TRT)

The TRT dataset by Maclaren et al. [55] consists of three subjects with 40 scans each. The
scans were collected by scanning each subject twice within 24 hours for 20 consecutive
days.

32



4.1. Datasets

Given that the morphological changes in the brain are expected to be minimal in this
time frame, the TRT dataset provides a stable benchmark for testing the consistency of
CSR methods. In the context of mesh correspondence, the TRT dataset allows the eval-
uation of correspondence metrics (cf. Subsection 4.6.2) without measuring the variance
introduced by morphological changes in the brain. As seen in Table 4.1, the subjects are
relatively young in comparison to the subjects in the ADNI and OASIS dataset, which
could make the reconstruction for these patients harder, since the models are trained
on ADNI data.

4.1.2. Preprocessing

For each dataset, the following preprocessing procedure is performed:

1. The officially provided raw files are processed using FreeSurfer v7.2 and its recon-all
pipeline (cf. Subsection 2.3.1).

2. MRI images for which FreeSurfer processing failed are removed.

3. The images (orig.mgz), meshes (rh.pial, rh.white), and segmentation maps
(aseg.mgz) are registered to MNI152 space (cf. Subsection 2.1.3) with an affine
transformation generated by NiftyReg [62] (more precisely reg_aladin v1.5.76),
which registers the respective MRI image to the MNI152 template image.

For training and evaluation of related methods (cf. Section 4.5), the following addi-
tional preprocessing steps are performed:

• All ADNI meshes are resampled to fsaverage as described in [77]. The meshes are
transformed to MNI space with the same transformation matrix as the orig.mgz
file (see above).

• All scans are run through FreeSurfer’s longitudinal pipeline (cf. Subsection 2.3.1).
The resulting meshes are transformed to MNI space using the same transforma-
tion as the orig.mgz file from the cross-sectional pipeline (see above).

Finally, to train the Template Generation Model (TGM) and the V2C-Long, the same
additional preprocessing steps are performed as described in [5]. Namely, the ground
truth meshes were reduced to about 40,000 vertices with quadratic edge collapse dec-
imation [29] using MeshLab [12]. The MRI images were cropped to size (192,224,192)
and intensity normalized between 0 and 1 using min-max normalization.

4.1.3. Training/Validation/Test Split

The main dataset used for training is the ADNI dataset. We split the ADNI dataset into
a training set, a validation set, and a test set using the same 70/10/20 split as in [6]
and [77]. Importantly, we have split the longitudinal dataset at the patient level and
balance the splits with respect to patient age, sex, and diagnosis.
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4.2. General Training Setup

All V2C-Flow models trained in this work (including the TGM and V2C-Long models)
are trained on the ADNI training set with the following setup:

• Model: The model has two components: a 3D U-Net operating in image space
and a graph network operating in mesh space. We use the same configuration
as Bongratz, Rickmann, and Wachinger [6], i.e. the graph network consists of two
graph Neural Ordinary Differential Equation (NODE) blocks with 5 Euler steps
each.

• Ground Truth: We use the FreeSurfer surfaces and segmentations derived from
the cross-sectional recon-all pipeline. The ground truths are registered to MNI
space as described in Subsection 4.1.2. For training purposes, we further reduce
the ground truth meshes with quadratic edge collapse decimation [29] to about
40,000 vertices per mesh to save memory.

• Loss: The training loss is a combination of a cross-entropy loss for the U-Net,
a modified, curvature-weighted, Chamfer loss for the graph, and an edge and
normal consistency regularization loss for the graph (see [6] for details). For
the modified Chamfer loss, we sample 100,000 points on the reduced ground
truth meshes and resample them if the validation Average Symmetric Surface
Distance (ASSD) has not improved for 20 epochs. The gradients are clipped to a
maximum norm of 200,000.

• Optimizer: The models are optimized using the AdamW [51] optimizer with
β1 = 0.9, β2 = 0.999, a weight decay of 10−4, a batch size of 1 and a cyclic
learning rate schedule [82]. The base learning rate is 10−4 for the U-Net weights
and 5 · 10−5 for the graph parameters.

• Validation: Unless otherwise specified, the model was evaluated every 5 epochs
on the ADNI validation set. When referring to the “best” epoch, we refer to
the epoch with the lowest mean ASSD (over all surfaces and patients) on the
ADNI validation set (this does not include aggregations in the NXN/NXN_sorted
modes).

• Surfaces: Due to the large number of scans in the longitudinal ADNI dataset,
and due to the linear scaling of GPU and system memory requirements with the
number of surfaces, we train and evaluate our model only on the pial and white
matter surfaces of the right hemisphere.
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4.3. Template Generation

For template generation, we pretrain a single model on the ADNI training set for 55
epochs using the smaller, smoothed fsaverage6 template, which contains around 40,000
vertices per surface. We evaluate the model every 5 epochs for the first 45 epochs and
every epoch for the last 10 epochs. The best validation mean ASSD score was obtained
after 46 epochs.

The same model is then trained on the larger, smoothed fsaverage template for 15
epochs. The epoch with the best validation score was epoch 7.

Finally, the model is used to predict all surfaces in the full ADNI dataset (train-
ing+validation+test), the OASIS dataset, and the TRT dataset. For the MEAN and
MEDIAN pairing modes, a patient-specific template is generated by averaging the pre-
dicted surfaces of a patient.

4.4. Ablation Studies

To find the best configuration of pairing mode and longitudinal template features, we
perform two ablation studies on the ADNI validation set. In the first ablation study,
we compare the performance of the pairing modes (cf. Subsection 3.1.2) by training
and evaluating a model for each. In the second ablation study, we measure the effect of
different longitudinal template features (cf. Subsection 3.1.3), by training and evaluating
a model for each combination of features.

4.4.1. Pairing Mode

For the pairing mode ablation study, we train a separate model for each pairing mode
(except the PREV_CHAIN mode) on the ADNI training set. In addition, we train a
model for the static, smooth fsaverage template used in the original V2C-Flow paper [5].
We call this model the STATIC mode model. All models use the ADNI templates gen-
erated by the trained TGM described in Section 4.3. To save training time, we initialize
each model with the weights from the trained TGM. After training, we evaluate each
model on the ADNI validation set and select the best model based on the reconstruction
and correspondence metrics (cf. Subsection 4.6.2 and Section 3.2).

Since the number of generated pairings, and thus the number of steps per epoch,
varies between the different pairing modes (cf. Table 3.1)), we train each model for
roughly the same number of steps (about 57,000) instead of epochs. To additionally
evaluate the models at similar points in training, we also vary the number of epochs
between each evaluation. An overview of the concrete number of steps and epochs
used for each model can be found in Table 4.2.
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Pairing Mode #Steps per Epoch #Epochs Total #Steps Eval. every N epochs

PREV 2,880 20 57,600 5
NxN 19,073 3 57,219 1
NxN_SORTED 11,409 5 57,045 2
All other modes 3,745 15 56,175 5

Table 4.2.: Overview of steps and epochs used for each model in the pairing mode
ablation study.

4.4.2. Template Features

For the template features ablation study, a separate model is trained for each combina-
tion of template features (cf. Subsection 3.1.3) on the ADNI training set. This results
in a total of 4 models: One model trained without longitudinal template features, one
model trained with additional time difference features, one model trained with graph
features from the TGM, and one model trained with both. Since the number of features
varies between the different combinations, we cannot reuse existing model weights for
initialization, and train each model from scratch instead. We train each model for 45
epochs (about 170,000 steps) and evaluate each model every 5 epochs on the ADNI
validation set. In the last five epochs, we evaluate the models after each epoch.

Finally, we select the final configuration of the V2C-Long model based on the recon-
struction and correspondence metrics.

4.5. Comparison with Related Methods

After selecting the final configuration of the V2C-Long model, we evaluate it on the
ADNI test set, the OASIS dataset, and the TRT dataset. We also evaluate the following
related methods on the same datasets.

4.5.1. FreeSurfer Longitudinal

Since FreeSurfer is the de facto standard method for CSR [5], it is an important baseline
for comparison. As described in Subsection 4.1.2, the FreeSurfer longitudinal pipeline
(cf. Subsection 2.3.1) is run on all scans in our ADNI test set, the OASIS dataset, and the
TRT dataset. We then use the same transformations used the normal FreeSurfer ground
truth meshes to transform the FreeSurfer longitudinal meshes (right hemisphere, pial
and white) to MNI space. As the ground truth meshes used to evaluate the reconstruc-
tion metrics come from FreeSurfer itself, we expect good results in terms of reconstruc-
tion accuracy.
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4.5.2. V2C-Flow

Since the V2C-Long model is based on V2C-Flow [5], we also include it in our eval-
uation. Note that the general setup of this model is the same as the STATIC mode
model used in the pairing mode ablation study (see Subsection 4.4.1), i.e., we use the
smoothed fsaverage template. The hyperparameters used for training are also the same
as those used in the V2C-Long model, as described in Section 4.2. However, instead of
initializing the model with the weights from the trained TGM, we train the model from
scratch for 45 epochs on the ADNI training set. In this way, we can fairly compare the
performance with the best V2C-Long model from the template features ablation study.
The model was evaluated every 5 epochs on the ADNI validation set. For the last 5
epochs, the model was evaluated every epoch. For the final evaluation on the ADNI
test set, the OASIS dataset, and the TRT dataset, we selected the epoch with the best
mean ASSD score on the validation set.

4.5.3. CorticalFlow++

CorticalFlow++ [17, 42] is another explicit mesh deformation method for Cortical Sur-
face Reconstruction. It learns a diffeomorphic deformation field which gives theoretical
guarantees on the smoothness and invertibility of the deformation and further implies
no self-intersections in the reconstructed surfaces [42]. However, due to discretization
and numerical integration errors, self-intersections still occur in practice, although at a
much lower rate than in Vox2Cortex or V2CC [77].

For our evaluation, we use the publicly available source code of CorticalFlow++ [83],
based on Git commit 550953e6b07. For the Chamfer loss, we sample 100,000 points on
the ground truth mesh. The template mesh used has about 140,000 vertices per surface,
providing a similar level of detail as the meshes in our V2CC, V2C-Flow, and V2C-Long
models, which have about 160,000 vertices each. The three deformation blocks of the
model were trained on the ADNI training set for 70,000 iterations each. This results
in a total of 210,000 iterations, which is more than the 170,000 iterations used for the
V2C-Long model.

4.5.4. V2CC

The final comparison method is V2CC [77]. See Subsection 2.3.3 for a description and
visual overview of the method.

The mesh loss used to train V2CC is the one proposed by Rickmann, Bongratz, and
Wachinger [77]. With My being the predicted mesh and My′ being the resampled
ground truth mesh, the mesh loss is defined as follows (adapted from [77]):

LMesh(My, M′y) = L1(My, M′y) + λLreg(My) (4.1)

where L1 is the L1 norm of the mean absolute error between the corresponding vertex
coordinates of the predicted mesh and the resampled ground truth mesh, and Lreg is
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the normal consistency loss used in V2C-Flow and Vox2Cortex [5, 6]. Additionally, the
cross entropy-loss for the U-Net segmentation is added 1:1 to the mesh loss for the final
loss. For our training, we set the parameter λ = 0.003 for the white matter surface and
λ = 0.007 for the pial surface.

As described in Subsection 4.1.2, we resampled the ADNI ground truth meshes to
fsaverage and transformed them to MNI space, using the same transformation matrix
as for the non-resampled ground truth meshes. Note that unlike V2C-Long, we did
not reduce the meshes for the Chamfer loss. We then trained V2CC for 45 epochs on
the ADNI training set and evaluated it every 5 epochs on the ADNI validation set. The
epoch for the evaluation on the test set and the other datasets was chosen based on the
best average ASSD score on the validation set.

4.6. Evaluation Procedure

4.6.1. Overview

Evaluation Metrics

We evaluate all methods in two ways: First, we evaluate the reconstructed surfaces
(right hemisphere, pial and white matter) against the ground truth surfaces for all pre-
dictions using the reconstruction metrics described Subsection 4.6.2. Second, we evalu-
ate the correspondence of the reconstructed surfaces by applying the metrics described
in Section 3.2 to all sets of intra-patient predicted meshes.

This results in a set of values for each scan and surface type for the reconstruction
metrics and a set of values for each patient and surface type (white and pial) for the
correspondence metrics. For the reconstruction metrics, we first mean the values over
all time points of a patient to get a single value per patient and surface type. Finally,
we compute the mean and standard deviation of the values over all patients for each
surface type and metric.

Vertex Displacement

In our V2C-Long model, we additionally track the total distance that each vertex is
displaced during a prediction, by summing the vertex displacement distance of each
deformation block (in our case, there are two blocks). This metric does not directly
measure the quality of the vertex correspondence or the reconstruction accuracy, but it
can help in understanding the behavior of the model.

Datasets Used

For the ablation studies, we evaluate the relevant models on the ADNI validation set.
For the final comparison of the best V2C-Long model with other approaches, we evalu-
ate the relevant models on the ADNI test set, the OASIS dataset, and the TRT dataset.

38



4.6. Evaluation Procedure

4.6.2. Reconstruction Metrics

In addition to evaluating the correspondence of the reconstructed surfaces with the
metrics described in Section 3.2, we also evaluate the accuracy and regularity of the
reconstructed surfaces.

As in Bongratz, Rickmann, and Wachinger [6], we use the ASSD and the 90th Per-
centile Hausdorff Distance (HD90) to evaluate the quality of the reconstruction. To eval-
uate the regularity of the surfaces, we use the average percentage of self-intersecting
faces.

Average Symmetric Surface Distance (ASSD)

The Average Symmetric Surface Distance (ASSD) is a metric that measures the distance
between two sets. In our case, we define it as the average of the distances from each
point in one set to the nearest point in the other set, and vice versa:

ASSD(A, B) = ∑a∈A d(a, B) + ∑b∈B d(b, A)

|A|+ |B| (4.2)

where A and B are the two sets and d(·, ·) is the Euclidean distance from a point to
the nearest point in the other set.

For our purposes, A and B are both sets of 100,000 uniformly sampled points on the
ground truth and reconstructed surface respectively. These points are resampled for
each evaluation pair.

90th Percentile Hausdorff Distance (HD90)

Similar to the ASSD, the Hausdorff Distance is a measure of the distance between two
sets. The HD90 is a modified version of the Hausdorff Distance that is less sensitive to
outliers. While the Hausdorff Distance is based on the maximum distance from a point
in one set to the nearest point in the other set, the HD90 considers the 90th percentile
of these per-point distances. For symmetry, we use the maximum of the 90th percentile
of the distances from A to B and from B to A:

HD90(A, B) = max
(
Q90({d(a, B) | a ∈ A}), Q90({d(b, A) | b ∈ B})

)
(4.3)

where Q90 is the 90th percentile of one set and d is again the Euclidean distance from
a point to the nearest point in the other set.

As in the case of the ASSD, A and B are both sets of 100,000 uniformly sampled
points each on the ground truth and the reconstructed surface, respectively. We use the
same points to compute both the ASSD and the HD90.

Mean Percentage of Self-Intersecting Faces (%SIF)

The Percentage of Self-intersecting Faces (%SIF) is a measure of the regularity of the
reconstructed surfaces.
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Mesh deformation-based methods such as Vox2Cortex tend to produce self-intersecting
surfaces [5], which can cause issues in downstream processing steps. To evaluate the
number of self-intersections, we use the %SIF metric, which is defined as the mean
number of self-intersections per 100 faces.

To compute the %SIF, we use MeshLab, an open source mesh processing tool [13],
with the pymeshlab [63] Python bindings.

4.6.3. Evaluation of Pairing Modes

The number of meshes generated and the number of time points reconstructed vary
between the different pairing modes. This leads to different evaluation procedures for
the different pairing modes:

• STATIC/FIRST/MEAN/MEDIAN: For these modes, we get exactly one prediction
for each patient and each time point in the validation set. We compute the metrics
as described in Subsection 4.6.1.

• PREV/PREV_CHAIN: The PREV_CHAIN mode is not trained directly, but is
another way to predict meshes using the PREV mode model. The PREV_CHAIN
prediction mode starts with the template generated by the Template Generation
Model (TGM) for a patient’s first time point and then uses the PREV model to
predict the second time point. For the third time point and onwards, the previous
prediction is used as input, unlike the PREV model, which would use a mesh from
the TGM. This is repeated until all time points have been predicted. Figure 4.2
illustrates this prediction mode. As each prediction should have a good vertex
correspondence to its template, i.e. the previous prediction, we expect a better
overall intra-patient mesh correspondence than in the PREV mode, where each
prediction uses a different, more independent template.

Both modes do not generate predictions for the first time point of a patient. The
reconstruction metrics are computed only for the actual predicted time points.
This means that we average the reconstruction metrics from the second up to the
last time point to get a value per patient, which is then averaged over all patients.
For the correspondence metrics, however, we substitute the first time point with
the mesh generated by the TGM for fair comparison with the other modes, as all
model evaluations should use the same “total scans per patient” distribution. The
metric is then computed over all time points for each patient.

• NXN/NXN_sorted: For these modes, we get more predictions per patient than
there are time points. In addition, we get mean and median aggregates of each
time point. We first evaluate the reconstruction metrics for each prediction in the
patient (without the aggregates) and average them to get a score per patient. For
the correspondence metrics, we evaluate the correspondence across all predictions
for the patient, which means that this type of evaluation uses significantly more
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meshes than the evaluation of other modes. We denote the these evaluations as
NXN/NXN_sorted in the results.

In addition, we evaluate the metrics for the aggregated meshes separately. For the
aggregates, there is only one final mesh per patient and time point, so we evaluate
the metrics as in the STATIC/FIRST/MEAN/MEDIAN case. These evaluations
are denoted in the results as NxN mean, NxN median, NxN_sorted mean, and
NxN_sorted median.

fsaverage

Template Generation Model V2C-Long (PREV) V2C-Long (PREV)

Template Generation PREV_CHAIN Prediction
Template 1

& Prediction 1 for
correspondence

Prediction 2 Prediction 3

Figure 4.2.: Illustration of the PREV_CHAIN prediction mode. The model uses the pre-
viously predicted mesh as input for the next prediction. The first prediction
is generated by the TGM.

4.7. Implementation Details

All models were trained on an NVIDIA A100 GPU with 40GB of VRAM. We used
the PyTorch [67] deep learning framework and the PyTorch3D [70] library along with
CUDA 11.3 to implement and run the models. In addition, we used CUDA’s automatic
mixed precision (AMP) [2] to reduce the memory consumption of the models.

As the training set contains 3745 scans, and the NxN and NxN_sorted pairing modes
additionally generate a large number of training items, the total training for a single
model could take up to several weeks and require up to 837GB of system memory. The
Table A.1 in the appendix gives an overview over the hardware resources used and the
training time of the models.
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5. Results and Discussion
5.1. Template Generation

white surface pial surface

Type ASSD±std↓ HD90±std↓ %SIF±std↓ ASSD±std↓ HD90±std↓ %SIF±std↓

AD
N

I regular 0.192±0.120 0.424±0.617 0.901±0.316 0.191±0.110 0.433±0.588 2.465±0.974
mean – – 0.997±0.383 – – 2.406±0.875
median – – 0.454±0.173 – – 1.264±0.627

O
AS

IS regular 0.196±0.037 0.420±0.079 0.965±0.272 0.203±0.025 0.454±0.067 3.011±1.206
mean – – 1.242±0.419 – – 3.047±0.990
median – – 0.478±0.175 – – 1.543±0.676

T
RT

regular 0.187±0.014 0.418±0.033 1.051±0.409 0.275±0.035 0.617±0.091 4.627±0.616
mean – – 0.712±0.212 – – 2.940±0.599
median – – 0.329±0.068 – – 1.844±0.473

Table 5.1.: Reconstruction results for the white and pial surfaces for the generated tem-
plates by the TGM. ASSD and HD90 are ommited for mean/median.

The above table shows the reconstruction metrics for the templates generated by the
Template Generation Model (TGM), including the patient-wise mean and median tem-
plates. Note that for ADNI, the metrics are evaluated over the complete dataset, includ-
ing the training, validation, and test sets.

Compared to the results of related work [6, 5], the metrics show a very good recon-
struction accuracy. On ADNI, the ASSD and HD90 metrics are in a similar range for
both surfaces. On other datasets, the white surface can be reconstructed better than
the pial surface, both in terms of accuracy (ASSD, HD90) and regularity (%SIF), than
the pial surface. This may be explained by the fact that white surface is typically less
complex than the pial surface, which is more folded, making it harder to generalize.

The metrics align with the observations in [6, Table 2], that V2C-Flow is able to gen-
eralize well to unseen datasets. In particular on the white surface, the ASSD and HD90

scores for both datasets are very close to the scores obtained on ADNI, although the
model is trained exclusively on the latter. On the pial surface, the scores are signifi-
cantly worse for the TRT dataset, which could possibly be caused by the young age of
the patients (cf. Table 4.1).

Interestingly, the patient-wise median templates roughly halve the number of self-
intersections on both surfaces in ADNI and OASIS and even reduce the number of self-
intersections by about two-thirds on the TRT dataset. This could be due to the removal
of outliers, which can cause irregularities on the mesh, and the general smoothing
property of the median.
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5. Results and Discussion

5.2. Ablation Study: Pairing Mode

The first ablation study compares the different pairing modes (cf. Subsection 3.1.2) on
the ADNI validation set. The metrics are evaluated for the best epoch for each model
in terms of mean ASSD (over all patients and pial/white surfaces). The best epoch
is 15 for the STATIC model, 10 for the FIRST model, 10 for the MEAN model, 15 for
the MEDIAN model, 20 for the PREV model, 1 for the NxN model, and 4 for the
NxN_SORTED model.

Reconstruction Accuracy and Self-Intersections

Table 5.2a shows the reconstruction metrics for the different pairing modes. The same
trends can be observed as for the template metrics: Pial surface reconstruction is more
difficult than white surface reconstruction, and median aggregation of predictions sig-
nificantly reduces the number of self-intersections. As seen in Figure 5.1 when look-
ing at the PREV_CHAIN mode, the self-intersections from the templates are propa-
gated and amplified in the predictions, which explains why the MEDIAN mode model
(trained with the patient-specific MEDIAN templates) has fewer intersections than most
other models and the PREV_CHAIN model has the most intersections. Excluding the
models related to median operations, V2C-Long models typically have 20-40% more
self-intersections than the V2C-Flow model with the fsaverage template (STATIC), due
to this amplification.

Both the mean and median post-prediction aggregations for the NxN/NxN_SORTED
models perform significantly worse than the other models when it comes to the recon-
struction accuracy metrics (ASSD, HD90). The other models all reach similar scores
for ASSD and HD90 for both surfaces, with differences between the values of less than
0.025 mm for both metrics.

Mesh Correspondence

Tables 5.2b and 5.2c show the mesh correspondence metrics for the different pairing
modes. Additionally, the mean total vertex displacement (in mm) is shown for each
model.

First, we observe that the correspondence metrics correlate well with each other. A
good value in one metric typically indicates a good value in the other metrics, although
the relationship is not linear. In addition, the metrics do not differ much between the
pial and white surfaces, except for the Mean Curvature Variance (MCVar). This can
be explained by the fact that the pial surface is generally more curved than the white
surface, resulting in higher median values and thus higher variances.

In most cases, the V2C-Long models outperform V2C-Flow (STATIC) in the corre-
spondence metrics. In pairing modes, where intra-patient predictions share the same
template (FIRST, MEAN, MEDIAN), the correspondences are significantly and consis-
tently better than in V2C-Flow. This is expected because the V2C-Long deformations
are applied to the same vertices for all time point predictions and the displacements
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5.2. Ablation Study: Pairing Mode

white surface pial surface

Pairing Mode ASSD±std↓ HD90±std↓ %SIF±std↓ ASSD±std↓ HD90±std↓ %SIF±std↓

STATIC 0.1793±0.0305 0.4008±0.0745 1.042±0.260 0.1738±0.0242 0.3805±0.0562 2.004±0.678

FIRST 0.1813±0.0274 0.3883±0.0610 1.149±0.322 0.1671±0.0206 0.3822±0.0546 3.095±1.174

MEAN 0.1810±0.0303 0.4101±0.0752 1.286±0.357 0.1667±0.0218 0.3727±0.0528 2.842±1.109

MEDIAN 0.1788±0.0275 0.4036±0.0695 0.701±0.225 0.1666±0.0202 0.3834±0.0522 2.681±1.112

PREV 0.1783±0.0281 0.3886±0.0653 1.148±0.313 0.1687±0.0211 0.3830±0.0523 2.588±0.943

PREV_CHAIN 0.1800±0.0284 0.3924±0.0666 1.945±1.090 0.1708±0.0214 0.3837±0.0520 3.327±1.236

NxN 0.1798±0.0266 0.3873±0.0616 1.223±0.313 0.1724±0.0207 0.3980±0.0544 3.099±1.184

NxN_SO. 0.1768±0.0267 0.3877±0.0647 1.233±0.322 0.1689±0.0213 0.3804±0.0526 2.753±1.042

NxN mean 0.2426±0.0437 0.5527±0.1129 1.179±0.325 0.2404±0.0441 0.5773±0.1131 3.016±1.096

NxN_SO. mean 0.2442±0.0688 0.5673±0.1872 1.233±0.335 0.2390±0.0677 0.5688±0.1831 2.768±1.003

NxN median 0.2450±0.0384 0.5789±0.1097 0.578±0.229 0.2379±0.0357 0.5982±0.1050 1.671±0.787

NxN_SO. median 0.2199±0.0448 0.5182±0.1305 0.800±0.333 0.2146±0.0432 0.5183±0.1233 1.896±0.974

(a) Reconstruction results for the pial and white surfaces.

white surface both

Pairing Mode EdgeVar±std↓ MCVar±std↓ VL2±std↓ ParcF1±std↑ Disp±std↓ ThVar±std↓

STATIC 0.0115±0.0051 0.0546±0.0233 0.9385±0.2221 0.9263±0.0139 7.8585±0.3472 0.0487±0.0198

FIRST 0.0027±0.0012 0.0222±0.0094 0.4120±0.1019 0.9699±0.0079 1.0346±0.2512 0.0255±0.0114

MEAN 0.0028±0.0012 0.0268±0.0117 0.4047±0.1042 0.9710±0.0081 0.9124±0.1353 0.0255±0.0111

MEDIAN 0.0021±0.0010 0.0185±0.0078 0.4018±0.1001 0.9719±0.0079 0.8955±0.1311 0.0242±0.0108

PREV 0.0115±0.0052 0.0475±0.0213 0.9806±0.2213 0.9221±0.0145 1.0895±0.2051 0.0460±0.0196

PREV_CHAIN 0.0062±0.0037 0.0341±0.0188 0.7164±0.2251 0.9401±0.0148 1.0895±0.2051 0.0361±0.0155

NxN 0.0155±0.0060 0.0673±0.0239 0.9383±0.2225 0.9318±0.0126 1.0852±0.1168 0.0463±0.0188

NxN_SO. 0.0133±0.0054 0.0613±0.0236 0.8943±0.2214 0.9326±0.0125 0.9056±0.1773 0.0433±0.0179

NxN mean 0.0044±0.0022 0.0508±0.0287 0.4040±0.0993 0.9713±0.0076 – 0.0281±0.0118

NxN_SO. mean 0.0072±0.0033 0.0626±0.0311 0.6165±0.1377 0.9509±0.0111 – 0.0404±0.0154

NxN median 0.0021±0.0008 0.0118±0.0037 0.3864±0.0937 0.9738±0.0069 – 0.0227±0.0095

NxN_SO. median 0.0042±0.0015 0.0221±0.0070 0.5344±0.1145 0.9582±0.0085 – 0.0310±0.0121

(b) Correspondence results for the white surface and the results for the thickness variance.
pial surface

Pairing Mode EdgeVar±std↓ MCVar±std↓ VL2±std↓ ParcF1±std↑ Disp±std↓

STATIC 0.0113±0.0051 0.0384±0.0166 0.9760±0.2301 0.9231±0.0145 8.6509±0.4410

FIRST 0.0024±0.0011 0.0141±0.0059 0.4069±0.1025 0.9628±0.0111 1.0491±0.2579

MEAN 0.0023±0.0010 0.0168±0.0072 0.3943±0.1040 0.9662±0.0108 0.9177±0.1344

MEDIAN 0.0019±0.0009 0.0116±0.0049 0.3957±0.1001 0.9651±0.0107 0.8530±0.1278

PREV 0.0112±0.0051 0.0345±0.0156 1.0172±0.2292 0.9155±0.0164 1.0944±0.2101

PREV_CHAIN 0.0058±0.0035 0.0226±0.0123 0.7167±0.2283 0.9358±0.0160 1.0944±0.2101

NxN 0.0149±0.0059 0.0500±0.0184 0.9759±0.2311 0.9253±0.0148 1.0989±0.1155

NxN_SO. 0.0127±0.0052 0.0440±0.0171 0.9299±0.2293 0.9279±0.0138 0.9122±0.1803

NxN mean 0.0039±0.0019 0.0368±0.0215 0.3994±0.0994 0.9646±0.0103 –
NxN_SO. mean 0.0068±0.0031 0.0464±0.0235 0.6313±0.1416 0.9434±0.0126 –
NxN median 0.0019±0.0007 0.0075±0.0023 0.3816±0.0940 0.9681±0.0091 –
NxN_SO. median 0.0039±0.0014 0.0149±0.0047 0.5434±0.1164 0.9523±0.0100 –

(c) Correspondence results the pial surface.

Table 5.2.: Ablation study results for different pairing modes for both reconstruction
and correspondence metrics on the ADNI validation set. The two best re-
sults for each metric are highlighted. For a description of each metric, see
Subsection 4.6.2 and Section 3.2.
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5. Results and Discussion

are relatively small because the template is already close to the target mesh, which is
a natural limit for most correspondence metrics. On the other hand, pairing modes
where the template is not shared (PREV, NxN, NxN_SORTED), have correspondence
metrics in a similar range to the V2C-Flow model (STATIC). This can be explained by
the fact that the templates generated by the TGM (which contains a V2C-Flow architec-
ture) are likely to have similar mesh correspondence as the meshes from the STATIC
model, and the displacements in the V2C-Long model are comparatively small and do
not significantly affect the mesh correspondence (and would rather add noise/variance
to the vertex positions than remove it).

The PREV_CHAIN model performs better than the PREV mode, probably because
of the continuous vertex displacement across all time steps. However, when looking
at Figure 5.1, it is clear that the number of self-intersections is amplified over time. In
addition, the correspondence metrics get worse faster for more scans than for other
modes (see Figure 5.2), indicating that each additional prediction amplifies the noise
in the predictions for the PREV_CHAIN mode. This also explains why the correspon-
dence metrics are worse than for the FIRST/MEAN/MEDIAN modes, where such a
noise amplification does not occur.

The NxN mean model performs similarly to the patient-specific template models
(FIRST, MEAN, MEDIAN) in the more position-related metrics (VL2, ParcF1, Thick-
ness), but worse in the EdgeVar and MCVar metrics. The NxN median aggregation
model performs best in most metrics compared to all other models. The good results
in both cases may be caused due to the inclusion of multiple meshes per time point,
which may reduce the overall variance in the set of meshes that are evaluated with the
correspondence metrics. In both mean/median versions, the NxN_SORTED model per-
forms worse than the NxN model, which may be related to the imbalance in the number
of predictions per time point, which leads to biases in the mean/median computation
(cf. Figure 3.3).

5.2.1. Bias

Reconstruction Accuracy by Time Point

Since some pairing modes (PREV, FIRST, NxN_sorted) have a bias towards certain
processing directions or a certain time point (compare with [76, 74]), and modes like
MEAN/MEDIAN might favor certain time points closer to the middle of the time se-
ries, we examine the effect of the time point on the reconstruction metrics. Figure 5.1
shows the mean reconstruction metrics grouped by prediction time point for patients
with exactly 5 total scans (18 patients).

The first thing to note is that the results are very similar for the STATIC, FIRST,
MEDIAN, MEAN, PREV, NxN, NxN mean models for all time points, both in abso-
lute terms and in terms of the relative differences between the models. For the NxN
median/NxN_SORTED, NxN_SORTED mean/medians, the metrics vary significantly
between time points. This could be caused by increased sensitivity to outliers, which
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Figure 5.1.: Mean reconstruction metrics of the white surface for the pairing mode ab-
lation study on the ADNI validation set for patients with exactly 5 total
scans (n=18). See Figure A.2 in the appendix for the pial surface. The PREV
and PREV_CHAIN modes do not yield a direct prediction for the first time
point.
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5. Results and Discussion

may be more extreme for some time points in the dataset.
All models achieve slightly worse results for time points 3, 4, and 5. As this happens

even to the STATIC template mode, which predicts all steps independent of the specific
patient and time point, we believe that this could be caused by variance in the dataset
itself, i.e., the meshes for these time points are slightly harder to predict.

There is a slight relative increase for the PREV_CHAIN mode (light green): For time
point 2, its predictions are the same as for the PREV mode, which makes sense since
both modes use the same template for this prediction. After that, the PREV_CHAIN
mode starts to perform relatively worse for each subsequent time point. This may
be related to the increased number of self-intersections for the PREV_CHAIN mode,
as described earlier, which may make it more difficult to correctly predict the target
surface. However, this effect is quite small.

In summary, there is no direct evidence for an intrinsic pairing mode bias, except for
PREV_CHAIN. The pial metrics show a similar trend and are depicted in the appendix
(Figure A.2).

Correspondence by Number of Scans

In addition, we examine bias with respect to the total number of scans per patient. Fig-
ure 5.2 shows the correspondence metrics grouped by number of scans per patient and
pairing mode for the white surface. Patients with more than 7 scans are excluded as
there are fewer than 10 patients in this category in the ADNI validation set. The pial
results can be found in the appendix (Figure A.3), and show a similar trend. Clearly,
the correspondence metrics get worse the more total scans are evaluated. This is impor-
tant to note because it means that they are not directly comparable between patients
with different numbers of scans and between datasets with different distributions of
the number of scans per patient. There may be several reasons for this. First, patients
with more scans are likely to have more morphological changes in their anatomy. Sec-
ond, normalization by 1

n , as opposed to 1
n−1 in variance-based metrics, leads to biased

estimators that underestimate the true variance [91]. This effect is stronger for smaller
sample sizes. However, the relative differences between the pairing modes do not seem
to be significantly affected by the number of scans per patient.

Winning Model

We discard the NxN/NxN_SORTED mean and median aggregation models, as they
are not able to reconstruct the mesh sufficiently well (cf. Table 5.2). Of the remaining
models, the MEDIAN model performs best in all metrics, except for VL2 and ParcF1 on
the pial surface, where it is second to the MEAN model. It also significantly reduces
the number of self-intersections. In addition, there is no evidence of a model-related
bias towards a particular time point or number of scans per patient for the MEDIAN
model. Therefore, we select the MEDIAN pairing mode as the “winner” model and
use it for the following ablation studies and the final comparison. From now on, when
we refer to V2C-Long, we mean the V2C-Long with the MEDIAN pairing mode.
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Figure 5.2.: Mean correspondence metrics for the white surface and the thickness on the
ADNI validation set, grouped by number of scans per patient and pairing
mode. Patients with more than 7 scans are excluded, as there are fewer than
10 patients in that category. See Figure A.3 (appendix) for the pial surface.
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5. Results and Discussion

5.2.2. Vertex Displacement and Mesh Correspondence

In this section, we attempt to explain why the MEDIAN mode outperforms the FIRST
and MEAN modes, even though all three operate similarly, by using a patient-specific
template.

We believe that the performance difference can be partially explained by the total
vertex displacement of the prediction, i.e., how far in total each vertex is moved from
the original, patient-specific template position to the predicted position during the two
deformation steps. As shown in Tables 5.2b and c, the MEDIAN model has the lowest
overall mean displacement of the three models, closely followed by the MEAN model,
and with a little more distance by the FIRST model.

Figure 5.3 shows the mean vertex displacement against the correspondence metrics
for both the white and pial surfaces. In the scatter plots, each data point represents
a patient in the ADNI validation set in one of the three models. There is a clear re-
lationship between the displacement and the correspondence metrics. The higher the
displacement, the worse the correspondence metrics tends to be, it is particularly strong
for the VL2 with a Pearson correlation coefficient for the MEDIAN model of 0.89 for the
white surface and 0.91 for the pial surface. The relationship is weaker for the MCVar
metric (coefficients of 0.58 and 0.62 respectively), which we believe is due to both the
higher sensitivity of the metric and nonlinearities in the metric itself.

For the MEAN model, some outliers can be seen in the displacement, probably
caused by the fact that the mean operation is more sensitive to outliers than the median
operation, resulting in template vertices that are located farther away from the target
surfaces. The displacements for the FIRST model are generally higher than for the other
two models because the surface for the first time point (which is used as the template)
is typically at a morphological extreme compared to the other time points.

Interestingly, the outliers for the MEAN template do not cause a proportional in-
crease in the correspondence metrics. It also appears that the linear relationships be-
tween displacement and correspondence metrics for the models are “shifted” by some
offset. This is quite pronounced in the pial VL2 plot (top right). This indicates that
the lower displacements in the MEDIAN model do not fully explain the better cor-
respondence metrics. The cause of the shift may lie in the way and extent of vertex
deformation by the graph NODEs of the mode. For example, if most of the variation
in correspondence are introduced by small displacements the second block, potentially
larger displacements (e.g., in the FIRST model) in the first block might not affect the
correspondence metrics as much. We leave this question open for future work.

For similar plots with more modes included, see Figure A.4 and Figure A.5 in the
appendix.
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Figure 5.3.: Mean displacement plotted against correspondence metrics for selected
modes. Each data point represents a patient in the ADNI validation set.
Linear regression results are plotted for the MEDIAN pairing mode. R:
Pearson correlation coefficient.



5. Results and Discussion

5.3. Ablation Study: Template Features

Table 5.3 shows the results of the ablation study on the different template features. The
winning pairing mode from the previous ablation study (MEDIAN, from now on the
default for V2C-Long) is used for the models in this study. Four models were trained
for 45 epochs each: V2C-Long without any additional features (V2C-Long, best epoch:
45), V2C-Long with additional template-target time difference features (V2C-Long+∆t,
best epoch: 42), V2C-Long with latent features from the graph part of the Template
Generation Model (TGM) (V2C-Long+glf, best epoch: 42), and a model with both ad-
ditional features (V2C-Long+∆t+glf, best epoch: 40). Note that for the time difference
features, each input vertex coordinate vector is extended by the time difference between
the template and target time point, in months. For the MEDIAN templates, the time
difference is set as the relative distance between the target time point and the patient’s
mean time point.

Looking at the metrics, some trends can be observed:

1. Time Difference Features and Reconstruction Accuracy: Although one might
expect the time difference features to give the model an advantage, as it may
learn to predict cortical atrophy over time, the results show that both models
using time difference features perform worst in terms of reconstruction accuracy
(ASSD and HD90). This may be due to the mix of healthy and diseased patients
in the dataset, which makes it more difficult to learn a general atrophy pattern.
The other two models perform about the same in terms of ASSD and HD90. The
graph features do not seem to have a significant effect on reconstruction accuracy.

2. Graph Latent Features and Mesh Structure Correspondence Metrics: The graph
latent features seem to have a positive effect on EdgeVar, ThVar, and MCVar,
which are all metrics that are sensitive to the local mesh structure. The V2C-
Long+glf model performs best on both surfaces for both metrics, while the V2C-
Long+∆t consistently performs worst.

3. Time Difference Features and Position-Dependent Correspondence Metrics: Both
metrics that are sensitive to the absolute position of the vertices (VL2 and ParcF1)
seem to benefit from the time difference features. The V2C-Long+∆t model per-
forms best in both metrics on both surfaces, followed by V2C-Long+∆t+glf. Com-
bined with the previous trend, an explanation for the performance of the time dif-
ference models could be that the trajectories of corresponding vertices are more
similar in these models, potentially leading to less regularity in the mesh struc-
ture (bad for EdgeVar, ThVar, and MCVar) and less accurate predictions (ASSD
and HD90), but to better VL2 and ParcF1 scores.

4. Features and Displacements Using any of the additional features seems to lower
the mean vertex displacement. This may indicate that the model is more confi-
dent in its predictions, in the sense that the vertex trajectories more closely fol-
low a straight line from the template to the target position. This explanation is
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more plausible in this situation because compared to the previous ablation study,
the displacement does not correlate as strongly with the correspondence metrics
(cf. Figure 5.3).

In general, the differences between the models are not very large. However, given
that the above trends can be observed consistently across metrics and features used,
we believe that the additional features do have a significant effect on the model perfor-
mance and that the differences are not caused by random training fluctuations. More
research on the exact vertex-wise effects of the feature additions is needed to fully
understand the results.

Although there is no clear winner in terms of metrics, we choose the V2C-Long+glf
model as the final model to evaluate on the test set because it consistently performs
best in two correspondence metrics while not suffering from a significant decrease in
reconstruction accuracy.

white surface pial surface

Model ASSD±std↓ HD90±std↓ %SIF±std↓ ASSD±std↓ HD90±std↓ %SIF±std↓

V2C-Long 0.1701±0.0298 0.3799±0.0720 0.638±0.232 0.1640±0.0221 0.3680±0.0538 2.345±0.926

V2C-Long+∆t 0.1794±0.0316 0.4026±0.0760 0.743±0.271 0.1777±0.0239 0.4123±0.0620 2.061±0.990

V2C-Long+glf 0.1697±0.0272 0.3785±0.0666 0.641±0.243 0.1649±0.0216 0.3764±0.0543 2.168±0.954

V2C-Long+∆t+glf 0.1723±0.0269 0.3815±0.0663 0.615±0.228 0.1656±0.0209 0.3788±0.0538 2.303±1.017

(a) Reconstruction results for the pial and white surfaces.

white surface both

Model EdgeVar±std↓ MCVar±std↓ VL2±std↓ ParcF1±std↑ Disp±std↓ ThVar±std↓

V2C-Long 0.00161±0.00080 0.01569±0.00679 0.3918±0.1093 0.9731±0.0091 0.7469±0.1584 0.0231±0.0103

V2C-Long+∆t 0.00199±0.00095 0.02061±0.00869 0.3741±0.1022 0.9760±0.0084 0.6947±0.1379 0.0247±0.0106

V2C-Long+glf 0.00137±0.00068 0.01445±0.00634 0.3810±0.1068 0.9746±0.0091 0.6894±0.1566 0.0212±0.0095

V2C-Long+∆t+glf 0.00140±0.00068 0.01506±0.00654 0.3745±0.1033 0.9759±0.0085 0.6699±0.1458 0.0209±0.0093

(b) Correspondence results for the white surface and the results for the thickness variance.
pial surface

Model EdgeVar±std↓ MCVar±std↓ VL2±std↓ ParcF1±std↑ Disp±std↓

V2C-Long 0.00137±0.00069 0.00942±0.00402 0.3848±0.1082 0.9667±0.0117 0.7571±0.1567

V2C-Long+∆t 0.00156±0.00077 0.01305±0.00544 0.3606±0.1015 0.9713±0.0111 0.6673±0.1378

V2C-Long+glf 0.00119±0.00058 0.00878±0.00371 0.3704±0.1050 0.9694±0.0116 0.6801±0.1524

V2C-Long+∆t+glf 0.00124±0.00060 0.00941±0.00400 0.3656±0.1025 0.9696±0.0116 0.6695±0.1447

(c) Correspondence results the pial surface.

Table 5.3.: Ablation study results for additional template features for both reconstruc-
tion and correspondence metrics on the ADNI validation set. The best result
for each metric is highlighted. For a description of each metric, see Subsec-
tion 4.6.2 and Section 3.2.
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5. Results and Discussion

5.4. Comparison with Related Methods

After the ablation studies, we evaluate the final version of the model, V2C-Long+glf
(MEDIAN pairing mode, template with additional graph latent features) on the ADNI
test set, the OASIS, and TRT datasets. In addition, we evaluate V2C-Flow [6], Corti-
calFlow++ [17], V2CC [77], and FreeSurfer longitudinal (c.f. Subsection 2.3.1) on the
same datasets. In Table 5.4, the reconstruction metrics for the pial and white surfaces
are shown, with the best non-FreeSurfer model highlighted in bold. In Table 5.5, the
mesh correspondence metrics are shown, with the best value for each metric high-
lighted. The ParcF1 metric was only evaluated for V2C-Flow, V2C-Long, and V2CC, as
these are the only methods that derive their meshes from FreeSurfer’s fsaverage subject,
whose parcellation labels are used for the ParcF1 metric.

5.4.1. Reconstruction Accuracy

On the ADNI test set, V2C-Long achieves a mean ASSD of 0.1767 mm on the white
surface and 0.1736 mm on the pial surface, and a mean HD90 of 0.4102 mm and 0.4092
mm respectively. This makes it the best of the non-FreeSurfer methods, beating even
V2C-Flow, the method on which it is based, by a significant margin on all datasets
(except HD90 on the pial surface, where it is second to CorticalFlow++ by a small
margin). This is consistent with the results obtained in the first ablation study (see
Table 5.2a), where the MEDIAN pairing mode (which V2C-Long uses) outperforms the
STATIC mode, which is equivalent to V2C-Flow. A possible reason for this could be that
V2C-Long’s patient-specific median template provides the model with a good prior for
the target surface. Since some work has been put into training the Template Generation
Model (TGM), this can be seen as an unfair advantage for V2C-Long. Therefore, the
result should be taken with a grain of salt, as it is unclear if this effect will persist as the
models are trained for more epochs, or whether the ASSD and HD90 validation scores
will converge to similar values.

Although V2CC uses a similar architecture to V2C-Flow and V2C-Long, it performs
worst in both ASSD and HD90 and particularly struggles on the pial surface (with an
ASSD score of 0.2432 and an HD90 score of 0.5578). The low performance could be
related to the resampled ground truth meshes or to the Vox2Cortex deformation blocks
used in V2CC.

In terms of self-intersections, V2C-Long beats V2C-Flow by a significant margin
(1.005 vs. 0.643 and 2.151 vs. 2.443 %SIF respectively), which is likely due to the low
self-intersections in the median templates (see Table 5.1), which are not significantly
amplified by the low displacements in the V2C-Long model. However, both models
lag behind V2CC and CorticalFlow++, with V2CC having the lowest number of self-
intersections on the white surface (0.456 %SIF), and CorticalFlow++ having the lowest
number on the pial surface (0.3679 %SIF), excluding FreeSurfer.

FreeSurfer longitudinal has the highest overall reconstruction accuracy, which is not
surprising as the ground truth meshes are derived from FreeSurfer itself, albeit from the

54



5.4. Comparison with Related Methods

white surface pial surface

Model ASSD±std↓ HD90±std↓ %SIF±std↓ ASSD±std↓ HD90±std↓ %SIF±std↓

AD
N

I

V2C-Flow 0.1857±0.1160 0.4264±0.6453 1.0049±0.3887 0.1798±0.1087 0.4185±0.5618 2.4425±0.8981
V2C-L.+glf 0.1767±0.1607 0.4102±0.7512 0.6425±0.3752 0.1736±0.1602 0.4092±0.7295 2.1507±0.9213
CF++ 0.2140±0.1393 0.4923±0.8063 0.1728±0.2524 0.1907±0.1296 0.4456±0.8064 0.3679±0.4290
V2CC 0.2197±0.0363 0.4923±0.0888 0.0456±0.0741 0.2432±0.0401 0.5578±0.1044 1.6935±0.8550
FS long. 0.1513±0.0890 0.3172±0.1864 0.0012±0.0023 0.1446±0.0779 0.2995±0.2210 0.0042±0.0047

O
AS

IS

V2C-Flow 0.1844±0.0238 0.4187±0.0551 1.0746±0.2714 0.1963±0.0243 0.4525±0.0618 2.8280±1.1284
V2C-L.+glf 0.1762±0.0227 0.4028±0.0525 0.7670±0.2632 0.1855±0.0254 0.4296±0.0649 2.5683±1.0866
CF++ 0.2261±0.0323 0.5217±0.0785 0.2076±0.1337 0.2104±0.0410 0.4735±0.0780 0.4672±0.2238
V2CC 0.2215±0.0356 0.5060±0.0818 0.0408±0.0562 0.2816±0.0436 0.6539±0.1156 1.9513±0.9430
FS long. 0.1259±0.0244 0.2640±0.0535 0.0013±0.0016 0.1321±0.0250 0.2740±0.0549 0.0042±0.0033

TR
T

V2C-Flow 0.1989±0.0152 0.4792±0.0470 1.3392±0.4193 0.2807±0.0395 0.6331±0.0925 4.4295±0.7092
V2C-L.+glf 0.1913±0.0130 0.4587±0.0376 0.6622±0.2196 0.2656±0.0361 0.6092±0.0929 3.9161±0.6100
CF++ 0.2590±0.0146 0.6687±0.0554 0.1765±0.1283 0.2879±0.0316 0.6057±0.0576 0.4416±0.2462
V2CC 0.2275±0.0288 0.5440±0.0793 0.0908±0.0872 0.4339±0.0596 1.0760±0.2042 2.9964±0.4240
FS long. 0.1483±0.0079 0.3102±0.0123 0.0012±0.0014 0.1700±0.0180 0.3540±0.0406 0.0054±0.0032

Table 5.4.: Reconstruction metrics by surface, method, and dataset. The best non-
FreeSurfer method for each metric is highlighted in bold.

cross-sectional pipeline. Nevertheless, there is a difference of around 0.15 mm in ASSD
and 0.3 mm in HD90 for both surfaces. This may be caused by variance in FreeSurfer’s
reconstructions. Similar reconstruction inconsistencies (in the cross-sectional pipeline)
have been observed in the literature [5, Table 3]. FreeSurfer longitudinal meshes contain
almost no self-intersections (they occur on less than 0.01% of faces).

The reconstruction accuracy of V2C-Long and V2CC generalizes well to other datasets,
with V2C-Long even achieving better scores on the white OASIS surface than on the
ADNI dataset. V2CC struggles with the pial surface on the TRT dataset, where the
ASSD and HD90 scores are almost double that of ADNI (0.2342 vs. 0.4339 and 0.5578
vs. 1.0760 respectively). As explained in Section 4.1, the TRT dataset contains signifi-
cantly younger patients than the other datasets, which may explain the poorer perfor-
mance of the methods.

5.4.2. Mesh Correspondence

As shown in Table 5.5, in terms of correspondence metrics, our method (V2C-Long)
consistently performs best and even beats FreeSurfer longitudinal. FreeSurfer longi-
tudinal only narrowly wins in the EdgeVar metric on the OASIS and TRT datasets.
This shows that our method successfully predicts highly aligned intra-patient meshes.
The overall trend in terms of mesh correspondence is (from best to worst): V2C-
Long > FreeSurfer longitudinal ≈ V2CC > CorticalFlow++ ≈ V2C-Flow, with large
gaps between V2CC/FreeSurfer longitudinal and CorticalFlow++/V2C-Flow. V2CC
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5. Results and Discussion

beats FreeSurfer in the ThVar and MCVar metrics, while FreeSurfer beats V2CC in the
EdgeVar and VL2 metrics. It is unclear why.

The good performance of V2CC is probably due to the L1-loss used in training with
resampled ground truth meshes, which leads to more consistent vertex positions in the
predictions. The vertex correspondence in V2CC is designed to be cross-sectional, i.e.,
between intra- and inter-subject meshes [77], which may be a limiting factor compared
to V2C-Long and FreeSurfer, which both focus on intra-subject mesh correspondence.

Given that both V2C-Flow and CorticalFlow++ are not designed with mesh corre-
spondence in mind, it is not surprising that they do not perform as well as the other,
more dedicated methods. However, the regularity losses employed by both methods
can help with the performance of certain metrics. For example, the edge loss, which
penalizes different edge lengths within a single mesh [5, 6, 92] may push the model
to produce uniform edge lengths, which should lead to similar corresponding edge
lengths between meshes, if other mesh properties (e.g., the total surface area) are similar.
This in turn leads to better mesh correspondence and a better EdgeVar metric. Similar
effects should exist with the normal consistency loss of V2C-Flow [6, 5] and the MCVar
metric.

Regional Differences

To see which regions of the brain tend to have a worse mesh correspondence, we plot
the correspondence metrics on cortical surfaces in Figure 5.4. The metrics were evalu-
ated for each vertex and for each patient in the ADNI test set. Instead of taking the
mean per patient over all vertices, we take a vertex-wise median over all patients to
get a single value for each vertex. For the EdgeVar, the vertex values are computed
as the mean EdgeVar value of the connected edges. The plot shows that V2C-Long
consistently outperforms other methods, on all parts of the surface. Consistent with
the mean results in Table 5.5, the second best method is V2CC and both V2C-Flow and
CF++ perform worst.

For the EdgeVar metric, both V2C-Flow and CorticalFlow++ struggle with corre-
sponding edge length consistency around the visual cortex/occipital lobe at the back
of the brain, and the temporal lobe at bottom on the side of the brain. For the MC-
Var metric, all methods struggle at the inner part of the temporal lobe, close to the
entorhinal cortex. The FreeSurfer ground truth meshes contain sharp “ridges” in this
area, explaining the high variance in mean curvature. Similar unrealistic ridges in the
FreeSurfer ground truth meshes are found in the inner part of the corpus callosum,
where the methods also struggle with the MCVar metric. Around these two regions,
some outlier values exceeding 1200 are reached. These, however, cannot be identified
in the plot, because the color scale is limited to 0.1.

The plot also shows that the VL2 metric does not contain clear outlier regions, but
is rather smoothly distributed over the entire surface, while both MCVar and EdgeVar
have clear outlier regions, which motivates the use of the median over the vertices for
these methods in the final results presented in the tables.
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white surface both

Model EdgeVar±std↓ MCVar±std↓ VL2±std↓ ParcF1±std↑ ThVar±std↓

AD
N

I

V2C-Flow 0.01038±0.00486 0.04463±0.01927 0.9611±0.3428 0.9235±0.0301 0.0503±0.0327
V2C-L.+glf 0.00141±0.00123 0.01474±0.01133 0.4067±0.1291 0.9710±0.0154 0.0217±0.0149
CF++ 0.00876±0.00484 0.03398±0.01557 0.9291±0.5240 – 0.0435±0.0288
V2CC 0.00269±0.00122 0.02351±0.00959 0.6306±0.2049 0.9585±0.0155 0.0232±0.0100
FS long. 0.00168±0.00099 0.02414±0.01212 0.5877±1.1955 – 0.0354±0.0198

O
AS

IS

V2C-Flow 0.00932±0.00475 0.04095±0.01986 1.0101±0.2448 0.9113±0.0200 0.0501±0.0203
V2C-L.+glf 0.00129±0.00074 0.01327±0.00644 0.4321±0.1312 0.9630±0.0160 0.0221±0.0097
CF++ 0.00877±0.00474 0.03221±0.01663 1.0775±0.3276 – 0.0504±0.0246
V2CC 0.00259±0.00129 0.02210±0.01002 0.7131±0.2007 0.9470±0.0170 0.0263±0.0116
FS long. 0.00127±0.00081 0.02077±0.01102 0.5361±0.1762 – 0.0332±0.0149

TR
T

V2C-Flow 0.01850±0.00206 0.07944±0.01905 1.0472±0.0775 0.9331±0.0044 0.0726±0.0059
V2C-L.+glf 0.00222±0.00018 0.01976±0.00235 0.4004±0.0150 0.9819±0.0010 0.0301±0.0005
CF++ 0.01638±0.00299 0.06391±0.01585 1.0217±0.0703 – 0.0676±0.0038
V2CC 0.00485±0.00093 0.03861±0.00629 0.6475±0.0630 0.9664±0.0036 0.0362±0.0030
FS long. 0.00218±0.00026 0.03972±0.00402 0.4830±0.0122 – 0.0437±0.0003

(a) Correspondence results for the white surface and thickness variance.

pial surface

Model EdgeVar±std↓ MCVar±std↓ VL2±std↓ ParcF1±std↑

AD
N

I

V2C-Flow 0.01029±0.00491 0.03478±0.01506 1.0003±0.3590 0.9200±0.0284
V2C-L.+glf 0.00122±0.00110 0.00906±0.00804 0.3955±0.1298 0.9659±0.0167
CF++ 0.01412±0.00716 0.03428±0.01590 1.0004±0.5469 –
V2CC 0.00290±0.00143 0.02120±0.00876 0.6628±0.2171 0.9453±0.0180
FS long. 0.00158±0.00105 0.02294±0.01339 0.5870±1.2109 –

O
AS

IS

V2C-Flow 0.00936±0.00488 0.03192±0.01614 1.0626±0.2602 0.9044±0.0219
V2C-L.+glf 0.00116±0.00069 0.00839±0.00435 0.4247±0.1309 0.9533±0.0189
CF++ 0.01425±0.00771 0.03301±0.01752 1.1788±0.3511 –
V2CC 0.00290±0.00154 0.02157±0.01000 0.7599±0.2096 0.9289±0.0213
FS long. 0.00165±0.00111 0.02562±0.01630 0.5513±0.1803 –

TR
T

V2C-Flow 0.01929±0.00226 0.07731±0.01241 1.1429±0.0751 0.9176±0.0036
V2C-L.+glf 0.00220±0.00010 0.01625±0.00087 0.4079±0.0085 0.9663±0.0031
CF++ 0.02996±0.00510 0.07791±0.01857 1.1580±0.0734 –
V2CC 0.00558±0.00124 0.04186±0.00785 0.7130±0.0694 0.9474±0.0019
FS long. 0.00624±0.00102 0.12010±0.02224 0.5112±0.0107 –

(b) Correspondence results for the pial surface.

Table 5.5.: Correspondence metrics by surface, dataset, and method. The best result
for each metric is highlighted in bold. For a description of each metric, see
Subsection 4.6.2 and Section 3.2
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EdgeVar MCVar V_L2

V2C-Flow

V2C-Long
(ours)

CF++

V2CC
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VL2

Figure 5.4.: Vertex-wise correspondence metrics (median over all patients) on the ADNI
test set for different methods plotted on a randomly chosen ADNI brain.
FreeSurfer longitudinal is excluded, as the inter-patient meshes vary in the
number of vertices. The EdgeVar and MCVar values are max-limited to 0.2
and 0.1, respectively, to avoid outliers from dominating the color scale.
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Parcellation Consistency

As seen in Table 5.5, the ParcF1 metric differs considerably between the V2C-Flow,
V2C-Long, and V2CC methods. For all datasets and surfaces, V2C-Long performs
best, followed by V2CC, and then V2C-Flow. To get a clearer picture of the differences
between the methods, we plot the number of mismatches between parcellation labels
of nearest-neighbors across time points in Figure 5.5. The number of mismatches is
computed as described in Subsection 3.2.3, before the F1-score is applied, and then
summed over the vertex ids for a patient. This is done for each of the three participants
in the test-retest (TRT) dataset and for each of the three methods. Since there should
be little to no change in the morphological ground truth for these subjects, the number
of mismatches should reflect well the mesh consistency of the methods. Vertices that
are never misclassified are shown in gray, while misclassified regions are highlighted
in red/yellow.

The misclassifications appear around the parcellation region boundaries defined by
the fsaverage Destrieux parcellation labels and are caused by relative shifts/offsets of
corresponding vertices in the intra-patient mesh predictions. The wider the colored
areas around a parcellation boundary, the stronger the relative shifts produced by each
method. V2C-Long produces fewer mismatches than the other methods and the meshes
have less severe misalignments, as indicated by narrower highlighted regions around
the parcellation boundaries. This indicates an overall better correspondence of the intra-
patient meshes produced by V2C-Long, which is consistent with the results in Table 5.5,
including the other correspondence metrics.
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Subject 1 Subject 2 Subject 3

V2C-Flow

V2C-Long
(ours)

V2CC

0 200 400 600 800 1000 1200 1400
Number of misclassified vertices

Figure 5.5.: Number of mismatches in the Destrieux parcellation labels between nearest-
neighbors across time points per vertex (see Subsection 3.2.3) for the three
TRT subjects and for V2C-Flow, V2C-Long and V2CC. Vertices that are
never misclassified are shown in gray. The missclassifications take place
around the parcellation region boundaries. Bigger red regions suggest that
the methods produces longitudinal meshes where the extent of parcella-
tion regions overlap is larger (i.e. corresponding regions of the meshes are
shifted by a larger amount). V2C-Long produces fewer misclassifications
than V2C-Flow and V2CC and has significantly narrower regions of mis-
classification.
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6. Conclusion

6.1. Summary

We presented a new method, called V2C-Long, which produces longitudinal, intra-
subject aligned meshes in about twice the training and inference time compared to V2C-
Flow. By conducting two ablation studies, we found a good configuration of V2C-Long
by combining a patient-wise median template with additional vertex input features
extracted from the template generation process. Our method, applicable to any number
of scans, produces meshes that are state of the art in terms of vertex correspondence
and reconstruction accuracy, and have significantly fewer self-intersecting faces than
V2C-Flow, the method on which it is based on.

Finally, our general approach is not limited to the V2C-Flow method, but can be
applied to any explicit mesh deformation method, where the produced meshes have
the same number of vertices and the same vertex connectivity.

To illustrate the improved mesh alignment of V2C-Long, Figure 6.1 shows the same
pial surface region and pair of reconstructed surfaces as Figure 1.1 in the Introduc-
tion. This time, the meshes produced by our final V2C-Long model are also shown.
V2C-Long combines the positive aspects of V2C-Flow and FreeSurfer longitudinal by
aligning meshes as well as FreeSurfer longitudinal, but also by producing meshes with
similar smoothness and regularity as V2C-Flow.

In addition to the new method, we introduced a set of new, well-motivated metrics to
measure mesh correspondence. The metrics show similar trends, indicating that they
measure the same underlying property. The qualitative results, as seen for example in
Figure 6.1, suggesting that good values for these metrics are a good indicator of high
intra-subject correspondence of meshes.

6.2. Limitations and Outlook

Since this work marks a first step in a new and promising direction – deep learning
for longitudinal cortical surface reconstruction – there is room for further research and
improvement. We highlight some potential research directions below.
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6. Conclusion

(a) Used pial surface section (V2C-Flow
surface depicted). (b) FreeSurfer longitudinal surfaces.

(c) V2C-Flow surfaces. (d) V2C-Long surfaces.

Figure 6.1.: Mesh correspondence visualized on two pial surfaces of two intra-subject
scans (TRT s1_01, s1_02). V2C-Long meshes have similar smoothness and
regularity as V2C-Flow predictions and at the same time have a mesh cor-
respondence that is at least as good as FreeSurfer longitudinal meshes.
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6.2. Limitations and Outlook

Correspondence Metrics

The correspondence metrics we introduced in Section 3.2 are the first of their kind, and
we have found them useful for evaluating mesh correspondence. However, they have
some limitations. First, our correspondence metrics are not scale independent (e.g., the
L2 distance between two vertices is not scale invariant). In addition, we have found that
the metrics depend on the number of meshes that are being compared (cf. Figure 5.2).
Both of these properties make it difficult to compare the metrics across methods and
datasets. However, a simple way to reduce the impact of the total number of meshes is
to normalize the variance-based metrics (MCVar, EdgeVar, and ThVar) with 1

n−1 instead
of 1

n . For now, however, we suggest applying these metrics only to meshes in the same
coordinate system and not comparing them across different datasets.

An interesting direction for future work would be to use concepts from differential
geometry and shape analysis, such as shape descriptors [100, 15, 66], to define corre-
spondence metrics that can capture whether vertices are located at the same anatomical
location in a way that is robust to larger morphological changes. However, in our expe-
rience, shape analysis methods often fail on cortical surfaces due to the large number
of vertices and the high degree of folding.

Another interesting direction for further metrics would be to measure the consistency
of changes across neighboring vertices and time points.

Bias in Dataset

As explained in Section 4.1, in both the ADNI and OASIS datasets, some patients have
more scans than others. This introduces sampling bias into the dataset, since some
patients are overrepresented potentially making the model learn to reconstruct these
patients better. In addition, the timing of the scans is not consistent across patients,
which can also introduce a bias. This is important to keep in mind when comparing
the performance of different methods on these datasets.

Learnable Mesh Correspondence

In this work, we create a new pipeline for longitudinal mesh reconstruction by taking
an existing CSR method (V2C-Flow) and modifying the inputs used for the method.
However, the core architecture of V2C-Flow is not changed, except for the possibility
of additional vertex features. Therefore, the mesh correspondence is not learned, but is
a result of combining and modifying the inputs and outputs of the method.

Future work could investigate whether the mesh correspondence can be learned ex-
plicitly and unsupervised using tailored loss functions, architectures, or training meth-
ods, such as Siamese networks [99] or contrastive learning [35, 33, 11]. This may be a
difficult task however, as one must ensure that the reconstructed meshes of a patient
are not over-regularized and still reconstruct the ground truth meshes well without a
bias towards a “mean” mesh.
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6. Conclusion

Downstream Usage of V2C-Long Meshes

We speculate that the generated meshes by V2C-Long are suitable for downstream
tasks such as thickness analysis because they have similar or better alignment than
FreeSurfer longitudinal, which is currently the standard way to reconstruct meshes for
longitudinal analysis [64, 56]. However, we leave this question open for future work.
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Model Type Peak RAM Peak VRAM Epoch Duration Eval. Duration

STATIC/V2C-Flow ~423 GB ~38 GB ~5h ~3h40min
FIRST ~197 GB ~38 GB ~5h ~3h10min
PREV ~193 GB ~38 GB ~3h30min ~2h20min
NxN ~330 GB ~38 GB ~40h ~31h
NxN_SORTED ~351 GB ~38 GB ~16h ~17h30min
MEAN/MEDIAN ~182 GB ~38 GB ~5h ~3h10min
MEDIAN+glf ~359 GB ~38 GB ~5h30min ~3h25min
V2CC ~837 GB ~27 GB ~2h15min ~2h50min

Table A.1.: Hardware resources used for different models trained on a NVIDIA A100
GPU with 40GB of VRAM. The eval duration refers to the evaluation of
the ADNI validation set. Peak RAM is equal to the MaxRSS reported by
SLURM [98] and the higher RAM usage for V2CC is caused by loading the
full resampled ground truths into memory. The training for V2C-Long mod-
els required less RAM as the training for V2C-Flow, because of additional
optimizations. The addition of time difference features did not change the
hardware resources used significantly. The V2C-Flow based models require
more VRAM than the V2CC model due to the different architecture used
for the graph deformation blocks. glf: additional graph features.
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Figure A.1.: Training and evaluation procedure for template generation, ablation stud-
ies, and the final comparison. The colors of the boxes indicate which type
of templates were used for training and evaluation. A thin arrow indicates
initialization of model weights with the ones from a previous model. An
asterisk (H) marks the “winner” model in the respective context.
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Figure A.4.: Ablation Study 1: Mean displacement plotted against EdgeVar, MeanCurv,
VL2 metrics for selected modes with linear regression results. Each data
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tion coefficient.
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Figure A.5.: Ablation Study 1: Mean displacement plotted against ParcF1 and ThVar
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represents a patient in the ADNI validation set. R = Pearson correlation
coefficient.
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Abbreviations

%SIF Percentage of Self-intersecting Faces

ADNI Alzheimer’s Disease Neuroimaging Initiative

AD Alzheimer’s Disease

ASSD Average Symmetric Surface Distance

CSF Cerebrospinal Fluid

CSR Cortical Surface Reconstruction

CTE Cortical Thickness Estimation

EdgeVar Edge Length Variance

HD90 90th Percentile Hausdorff Distance

MCI Mild Cognitive Impairment

MCVar Mean Curvature Variance

MRI Magnetic Resonance Imaging

NODE Neural Ordinary Differential Equation

OASIS Open Access Series of Imaging Studies

ParcF1 Longitudinal Parcellation Consistency

SDF Signed Distance Function

TGM Template Generation Model
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ThVar Cortical Thickness Variance
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