TUTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

A Simulation Layer for Dynamically
Varying Computing Resources in MPI

Jan Fecht

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

A Simulation Layer for Dynamically
Varying Computing Resources in MPI

Eine Simulationsschicht fiir Dynamisch
Variierende Rechenressourcen in MPI

Author: Jan Fecht
Supervisor: Prof. Dr. Martin Schulz
Advisor: Dr. rer. nat. Martin Schreiber

Submission Date: April 15, 2021

I confirm that this bachelor’s thesis in informatics is my own work and I have
documented all sources and material used.

Munich, April 15, 2021 Jan Fecht

Acknowledgments

I want to thank Martin Schreiber for his great guidance and invaluable support
during the last months. This thesis would not be possible without him.

Also, my gratitude goes out to the MPI Sessions Workgroup which I had the honor
to present this work to and which provided me with great feedback.

I want to thank the Leibniz-Rechenzentrum for allowing me to evaluate my work
on their Linux-Cluster.

Finally, I am grateful for my friends and my family and their ongoing support.

Abstract

During the last two decades, the degree of parallelization in supercomputers has
been increasing with a fast pace. In November 2000, not a single supercomputer
contained more than ten thousand cores[14]. Twenty years later, the most powerful
supercomputer in terms of FLOPS, the Fugaku Supercomputer in Japan, contains
over seven million cores[15].

Modern job scheduling systems on supercomputers use fixed resource allocation
which provides little flexibility and leads to inefficient usage of computing resources.
These problems are amplified by the increasing parallelization. A dynamic resource
approach which allows varying available resources at runtime could fix the shortcom-
ings of space-sharing systems. However, this approach raises new questions on the
design of parallel applications with regard to resource-adaptivity and scalability. New,
robust interfaces and runtime components need to be specified and evaluated to make
programming and running dynamically resource-adaptive applications possible.

To tackle this problem, we used the new MPI Sessions model to develop an interface
for resource changes. The interface was inspired by recent work of the MPI Sessions
Workgroup! and uses process sets to group and describe resource changes.

For testing the interface, we have developed a simulated runtime environment
providing dynamic resources on top of MPIL This runtime environment is realized as
a C library called libmpidynres. The library uses a client-server model to manage
and schedule the application. We show that this library allows dynamic resource
changes to be handled by a parallel, loop-based application. Furthermore, the library
enables applications to use some concepts of MPI Sessions and therefore can be used
to develop and experiment with the MPI Sessions API.

However, more work must be done to test other parallel programming patterns
with this interface and to integrate this interface into the components of the runtime
stack of supercomputer systems.

Ihttps://github.com/mpivg-sessions/sessions-issues/wiki

https://github.com/mpiwg-sessions/sessions-issues/wiki

Contents

Acknowledgments iii
Abstract v
1. Introduction 1
1.1. Motivation e e 1
1.1.1. Jobs with Static Workload 1

1.1.2. Jobs with Dynamic Workload 2

1.2. ThesisGoals e 4

2. Related Work 5
2.1. The Message Passing Interface 5
22, MPISessions e 6
2.2.1. Global vs. Local Initialization 6

2.2.2. Runtime Information and Process Sets 7

2.3. Existing Work on Dynamic Resources 7
2.3.1. MPI's Dynamic Process Model 7

23.2. Invasive Computing 9

3. Core Concepts 11
3.1. MPIRuntimeData 11
32. MPI'sInfoObject 12
33. Computing Resource 12
3.4. ProcessSet e 13
35. ResourceChange 15

4. Realization of the Simulation Layer 17
4.1. Simulating the Runtimeontopof MPI. 17
4.1.1. Application Wrapper 18

41.2. LibraryInterfaces 20

4.2. Resource Manager and Computing Resources 21
421, Communication e 21

422. Control Flow & State Signaling 22

4.3. Resource Manager Realization 23
43.1. RequestHandling 23

vi

Contents

4.3.2. Process Set Management 24

43.3. Resource Change Management 25

43.4. Scheduling Approaches 26

4.4. Computing Resource Realization 30
441. SessionObject. 30

4.42. From Process Set to Communicator 30

4.5. Software Development Approach 32
4.5.1. Debugging Features of libmpidynres 32

45.2. Source Code and Project Structure 34

453. SoftwareTools 35

454. Software Evaluation 35

455. Included Examples 36

5. Library Interface 37
5.1. Environment Functions 37
5.2. Process Set Discovery Functions 39
5.3. Group and Communicator Functions 42
5.4. Process Set Management Functions 43
5.5. Resource Change Management Functions 44

6. Application Demonstration 47
7. Conclusion 55
710 Summary 55
72. Future Work 55

A. Build Instructions and Usage 57
A.l. Building and Installation 57
A.2. Documentation, Tests and Examples 58
A3. Usage and Debugging 59
Bibliography 61

vii

1. Introduction

1.1. Motivation

Supercomputers are expensive to maintain and are limited in their resources. Usually,
job schedulers use a space sharing model in which they grant a job exclusive access
to a set of resources on the supercomputer, e.g., CPU cores. This mechanism can lead
to inefficiencies as jobs might use their resources uneconomically. This can happen
when running an application on fewer resources than are reserved or by idling cores
at specific sections of the application execution.

If the job scheduler would be able to dynamically remove resources from an
application or add resources to an application, it would allow the scheduler to
optimize the core usage by transferring idle resources to applications with high
resource demand.

Additionally, this would allow the job scheduler to prioritize jobs dynamically and
to grant high priority jobs more flexibility on their available resources.

In most cases, parallel applications can be split into two categories: Applications
with static workload and applications with dynamic workload. A static workload
means that the data the application is working on stays fixed. On the contrary,
dynamic workload means that the data the application works on is changing dynami-
cally in size and structure. In the following sections we take a closer look at these
kinds of applications in the light of dynamic resource changes.

1.1.1. Jobs with Static Workload

In many parallel applications, the workload size of the application stays static,
meaning that the data on which computation will be applied is of a fixed size. In
these scenarios, the data is usually separated into chunks of similar size that are
assigned to different processes. Each process then applies computations on the
data. At the end, these chunks are aggregated at one rank which then produces
usable output. Many applications use a loop based approach where a single data
point computation depends on data points in its surrounding (convolution, partial
differential equation solvers). In these cases, each loop iteration has to be synchronized
to make the exchange of halo regions (data points that neighboring processes depend
on) possible.

1. Introduction

Once dynamic resources are introduced, the application can check for an available
resource change during synchronizations steps. If there is a resource change, data
has to be redistributed so that each process has a similar share of the workload after
the resource change. Applications with static workload size can profit from dynamic
resources by having more resources available during the computation loop and in
exchange having less resources at initialization and finalization phases surrounding
the computation loop.

Static Workload Static WL. + Resource Changes
s,e = get_my_section() for i in 1...n:
for i in 1...n: res_change ()
swap_halo() s,e = get_my_section()
compute(datals:e]) load_balance(s,e)
compute (datals:e])

Figure 1.1.: Pseudocode for static loop-based application scenarios.

1.1.2. Jobs with Dynamic Workload

B Dart station 21419

0.4

0.0

-0.4
L

T T T T
0 5000 10000 15000 20000
time since earthquake (seconds)

height relative to sealevel (meters)

0.8

Dart station 21401

— Bouy station data
— d=10/12, rc=5801000,10000

0.4

e to sealevel (meters)
0.0

T T T T
: K 0 5000 10000 15000 20000
OSISISISI SIS ; R time since earthquake (seconds)

1.0

Dart station 21418

2

T T T T
0 5000 10000 15000 20000
time since earthquake (seconds)

7 Dart station 21413

-05 00 05

T T T T
0 5000 10000 15000 20000
time since earthquake (seconds)

height relative to sealevel (meters)
0
L

height relative to sealevel (meters)

Figure 1.2.: Tohoku Tsunami Simulation using adaptive grids on PDEs by
Schreiber[34]. A finer grid can be seen at areas of high change.

1.1. Motivation

The aforementioned loop-based programming patterns are often observed in the
context of numeric computations, especially Partial Differential Equations (PDEs).
PDEs are used for a multitude of purposes including weather simulations, automotive
crash tests, and protein folding[17].

Using adaptive mesh refinement, PDEs can be solved more accurately by dynami-
cally increasing the precision in sensitive areas. However, this approach changes the
application workload size with each refinement step. These grid refinements lead to
load imbalances and to varying efficiency of the application.

The task of dividing the workload into chunks of similar sizes during adaptive
mesh refinement is difficult, especially in higher dimensions. Multiple software
packages exist to solve the problem by assisting the creation of large scale HPC
programs using adaptive mesh refinement.

p4est is an MPI library that manages data structures called octree in a forest of octrees
to enable parallel adaptive mesh refinement on large scale computer systems[3]. The
forest of octrees allows a programmer to describe the three-dimensional connectivity of
the mesh used. This forest can then be adaptively refined using callback functions
passed to p4est.

PETSc is a collection of libraries offering data structures and routines for parallel
scientific applications, mainly targeting PDE problems[1]. It has support for MPI and
can also use p4est as an adaptive mesh refinement backend.

Integrating these libraries with dynamic resources would ease the creation of
efficient, scalable PDE solver applications significantly.

Dynamic resources can also simplify the load balancing step by spawning new
processes at points where the grid becomes more dense and by removing processes
at point where the grid becomes more sparse.

Dynamic Workload (AMR) Dyn. WL + Resource Changes
for i in 1...n: for i in 1...n:
s,e = refine_grid() res_change ()
load_balance(s,e) s,e = refine_grid()
compute(datals:e]) load_balance(s,e)
compute(datals:el])

Figure 1.3.: Pseudocode for adaptive mesh refinement application scanarios.

1. Introduction

1.2. Thesis Goals

This work tries to accomplish the following goals with regard to dynamic resources:

Design of an Interface for Dynamic Resources

An MPI-like interface that uses new MPI Sessions concepts and allows a parallel
application to adapt to dynamic resource changes should be designed. The interface
should be well-defined and easy to use for programmers. At the same time, it should
allow programmers to trade off between portability and additional functionality by
providing optional MPI_Info type arguments.

Note that this work will focus on programs that follow the loop based parallel
programming pattern and have high synchronization requirements. The synchroniza-
tion allows all application processes to be aware of resource changes and to adapt
simultaneously.

Development of a C Library Implementing the Interface

The new interface should be tested and adjusted in case of potential problems. For
that, coping with the complexity of implementing a real dynamic scheduler on
multiple layers of the MPI runtime stack (MPI library, job scheduler, ...) should
be avoided. Avoiding these layers also allows for easy extensibility of the interface
implementation.

To solve the problem, this work presents a C library on top of MPI that implements
the proposed interface and a simulated dynamic resource environment. This assure
portability and ease of extensibility.

Exploration of MPI Sessions

The simulated environment should implement an interface for the MPI-4.0 Sessions
draft[10]. The draft already proposes an interface which should be implemented by
our library. Furthermore, the MPI Sessions interface should be tested and adjusted in
case of problems.

Testing the Interface

Finally, a proof-of-concept, loop-based application should be created. This application
should use the new interface to correctly handle and adapt to resource changes. At
the same time the application should be able to coordinate and communicate across
all available resources.

2. Related Work

2.1. The Message Passing Interface

Modern supercomputers are highly parallelized. They contain cores in the number
of millions[15]. Supercomputer applications need to be able to use these CPU cores
efficiently. To accomplish this, work began in the early 90s with the goal of creating a
standard library interface for efficient interprocess communication. This effort lead to
the release of the first Message Passing Interface (MPI) specification in 1993[36].

MPI defines a C and Fortran interface for message passing between processes of
an application. The interface allows programmers to efficiently use parallel pro-
gramming patterns on supercomputers. Popular implementations of the Message
Passing Interface include MPICH[26] and Open MPI[32]. Today, MPI is the dominant
programming model used on supercomputers and much research relies on MPI to
run scalable, distributed applications.

During the course of the years, multiple versions of the MPI Standard were released.
While the MPI-1 standard (with the latest version being MPI-1.3) mostly focuses on
Message Passing itself and defines Point-To-Point and collective communications
and process topologies, MPI-2 introduces first concepts of parallel I/O, one-sided
communications (using Remote Memory Access) and dynamic process management,
on which a close look will be taken in Section 2.3.1[7, 8]. The latest MPI version as of
April 2021 is MPI-3.1. MPI-3 introduces non-blocking collective concepts and further
functions for one-sided communication[9].

The efforts behind the MPI standard are driven by the MPI Forum, a collection of
experts on parallel computing from academia, governments and the computer indus-
try[9]. Currently, the MPI Forum is working on the next standard version, MPI-4.0.
MPI-4.0 “aim[s] at adding new techniques, approaches, or concepts to the MPI stan-
dard that will help MPI address the need of current and next generation applications
and architectures.”[25]. Some major goals include gaining better support for hybrid
programming models, meaning programming models that both contain interprocess
communication with MPI and shared-memory thread-based communication (e.g.,
using OpenMP), persistent collective operations which allow optimized reusage of
function calls with the same arguments and better fault tolerance support[25].

2. Related Work

2.2. MPI Sessions

MPI Sessions are a new concept introduced in 2016 by Daniel Holmes et al. at the
23rd European MPI Users” Group Meeting with MPI Sessions: Leveraging Runtime
Infrastructure to Increase Scalability of Applications at Exascale[20]. To further investigate
the concepts of MPI Sessions and how to realize them with a sound API, a new
MPI Forum working group concerning MPI Sessions was created. Since then, a first
prototype of an MPI Sessions API was implemented in Open MPI combined with
PMIx and PRRTE with support for initializing and finalizing sessions and creating
groups from the process sets "mpi://SELF" and "mpi://WORLD"[19, 18]. In contrast,
libmpidynres does not implement the MPI Sessions interface as part of an MPI
library, but will act as a simulation layer on top of MPI, which allows for greater
flexibility and experimentation with MPI Sessions concepts by not needing to modify
other areas of the runtime stack.

The MPI-4.0 draft released in November 2020[10] includes an MPI Sessions API
which is the main API reference used in this work. It was extended and slightly
modified in libmpidynres(see Chapter 5).

A timeline of MPI and MPI Sessions releases is shown in Figure 2.1.

NN
N Lo
o XY S
é@ & O
S i &
& N v & &
& ¥ ¥ » o> &
\%Q %ﬁ\, %ﬁ\, %\Q@
& & Ny & NN C
& &8 & &K e

1995 1998 2001 2004 2007 2010 2013 2016 2019

Figure 2.1.: Timeline of MPI & MPI Sessions

2.2.1. Global vs. Local Initialization

Traditionally, MPI must be initialized and finalized globally using MPI_Init and
MPI_Finalize. There are multiple downsides to this. Firstly, MPI initialization needs
to be coordinated. This makes it hard to create modular code and libraries. Also, MPI
cannot be initialized more than once and after it has been finalized. Furthermore,
global initialization is known to be bad at scaling efficiently with the size of ranks in
MPI_COMM_WORLD[4]. Because the size of large-scale MPI jobs has increased drastically
since the first version of MPI was released, a new approach is necessary. The proposed
MPI Sessions aim to solve these problems and replace the global MPI initialization.
MPI Sessions initialize MPI locally by creating a lightweight handle to the MPI

2.3. Existing Work on Dynamic Resources

runtime. The Session object can be initialized and finalized using two new functions
called MPI_Session_init and MPI_Session_finalize. MPI Session related functions
will then have to take a Session object as an argument to be able to access the runtime
information stored in the Session object[20].

2.2.2. Runtime Information and Process Sets

In general, the MPI Forum is hesitant when it comes to tighter runtime integration in
the MPI standard to keep the interface runtime-independent[20].

However, the current trends in High Performance Computing suggest that a tighter
runtime integration leads to performance gains. For example, knowledge about the
physical topology of the nodes can lead to a smart distribution of tasks to maximize
transfer speed and remote memory accesses[20]. Tighter runtime integration is also
a goal of the upcoming MPI-4.0 standard and part of it is to be realized using MPI
Sessions.

One concept that aims to help with better runtime integration are process sets.
Process sets allow the runtime to expose available computing resources in multiple
named sets. These sets can be used to group together ranks with similar physical
attributes (e.g., ranks sharing a rack) and thus give hints about the physical topology
of the computer system. Also, process sets can be useful for managing available
resources for an application as each application can have different process sets
available. This aspect will play a significant role in this thesis and is the driver behind
dynamic resource changes.

A closer look at process sets will be made in Section 3.4.

2.3. Existing Work on Dynamic Resources

Much research has been done to help the creation of dynamically scalable software.
This research goes way beyond HPC use cases. With the rise of cloud computing and
its service models, together with increased usage of containerization software, new
tools like Kubernetes[22] play a big role in creating scalable, reliable software. Here,
a closer look will be taken on two approaches targeting HPC: MPI's dynamic process
model and a new paradigm to parallel computing and CPU design called invasive
computing.

2.3.1. MPI's Dynamic Process Model

The MPI-2 standard introduced a new dynamic process model with multiple new
functions including the ones shown in Figure 2.2. This dynamic process model was
inspired by the work of PVM (Parallel Virtual Machine)[9, 8], a software package that
enables parallel computing over computer networks[12].

2. Related Work

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs,
MPI_Info info, int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
char x*array_of_argv[], int array_of_maxprocs[],
MPI_Info array_of_info[], int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Comm_get_parent (MPI_Comm *parent)

Figure 2.2.: C signatures for dynamic programming model introduced in MPI-2

The dynamic process model allows an application to spawn new MPI applications,
where the parent application is connected to the respective child application through
an intercommunicator. Furthermore, it allows applications to discover other MPI
applications that are not connected through the MPI_Comm_spawn mechanism, running
on the same computer system, using a client-server model.

It is important to mention that MPI'’s dynamic process model does not provide
a way of doing more complex tasks that may be provided by an operating system
(querying running processes, killing running processes etc.). Environment-specific
interfaces have to be used for this. However, MPI still assumes that an underlying
runtime has a process-like concept and provides a small interface for interaction with
it through the dynamic process model interface[9].

The new function MPI_Comm_spawn is used to spawn a child application. It allows to
specify an executable (command) together with its arguments (argv) that the underlying
runtime uses to start the application. The maxprocs argument specifies the number
of processes that should be contained in the child application, i.e. the number of
processes that should be started. By default, the number of child processes has to
be equal to the maxprocs argument. If the MPI library fails to start all processes it
will return an error code. Optionally, the info argument can be used to pass hints to
the MPI library. The info argument can also tell the MPI library that spawning less
than maxprocs children is valid. However, an MPI implementation does not have to
support this.

MPI_Comm_spawn_multiple is a similar function. It tells the MPI library that a new
child application should be started. However, the commands and/or arguments of
the new child application’s processes may differ. All started ranks are still part of the
same MPI_COMM_WORLD.

Finally, MPI_Comm_get_parent allows an MPI application to query the intercom-
municator that connects both the MPI_COMM_WORLD of the calling process and the

2.3. Existing Work on Dynamic Resources

MPI_COMM_WORLD of the application that started the calling application using one of
the MPI_Comm_spawn functions.

The downside of the spawn mechanism are mainly performance issues and lack of
flexibility. Due to the high amount intercommunicators and separate process groups
which may be created during a highly resource-dynamic application run, communi-
cation and synchronization become slow and inefficient[6]. Another downside is that
the destruction of processes can only happen in groups. Also, the maximum amount
of resources are limited by the MPI_UNIVERSE_SIZE parameter which represents the
total number of available processes for the HPC job.

2.3.2. Invasive Computing

Invasive Computing is a novel approach to parallel programming, first proposed by
Teich et al. in November 2010[35]. The core idea is that applications are resource-
aware and self-adaptive. They can expand to new, neighboring computing resources
at application runtime. The main goals behind Invasive Computing are dynamic
resource adaption and fault tolerance. The work behind Invasive Computing is driven
by the DFG (Deutsche Forschungsgemeinschaft) in the Transregional Collaborative
Research Centre 89 as a joint effort by the Technical University of Munich, the
Karlsruhe Institute of Technology and the FAU Erlangen[37].

The Invasive Computing approach defines multiple operations that a program
can apply on computing resources, including the operations invasion, infection and
retreat. During invasion, an application claims multiple resources in its surroundings.
Afterwards, the application copies its program code onto the resource cells that were
claimed (infection). Finally, the application can free resources by using the retreat
operation.

Originally, the Invasive Computing approach was mainly aimed for embedded
MPSoC devices[35], but work has been done to apply the approach to HPC.

In 2012, Urefia et. al modified the MPICH[26] library by extending the MPI-2 inter-
face with Invasive Computing operations, namely MPI_Comm_invade, MPI_Comm_infect
and MPI_Comm_retreat. After a successful infect operation, the new processes are
made part of MPI_COMM_WORLD. This extension, called invasive MPI (iMPI), was then
evaluated on an experimental Intel CPU containing 48 cores.

Gerndt et al. published an OpenMP extension called iOMP in 2013 which allows
the usage of the invade, infect, retreat operations in programming languages supported
by OpenMP[13, 31] and therefore in High-Performance Computing scenarios. One
of the available logical CPU cores was reserved for a designated resource manager, a
concept similar to the approach taken in this thesis.

In 2014, Martin Schreiber et al. successfully used the invasive computing approach
on HPC systems, by using MPI and OpenMP to create a hybrid Invasive Computing
environment. This environment was used to simulate tsunami wave propagation

2. Related Work

using adaptive grid refinement for solving partial differential equations[33]. The
authors use a resource manager to distribute available resources among multiple
applications.

Compres et al. implemented dynamic resources by modifying the MPICH library
and the Slurm Workload Manager in 2016[6]. Similar to this work, resource changes
are imposed by the runtime system and can be queried by the application. In contrast
to libmpidynres, Compres et al. use two separate functions, MPI_COMM_ADAPT_BEGIN
and MPI_COMM_ADAPT_COMMIT to apply the resource change. This approach starts new
resources with the first function call and removes resources with the second. This
allows the application to rebalance its workload. In libmpidynres, resource changes
are either addition or removal only, thus the need for two function calls is avoided.

In this work, the library libmpidynres is presented. Unlike the mentioned work
on dynamic resources, the library implements resource changes using process sets,
which were introduced with MPI Sessions. Also, libmpidynres is implemented as a
proof-of-concept on top of MPI which ensure potability and easy extensibility. The
main concepts used by libmpidynres are presented in the following chapter.

10

3. Core Concepts

3.1. MPI Runtime Data

When an MPI library is initialized, it has to discover other processes to construct com-
munication endpoints and MPI objects (e.g., Communicators, Groups, ...). During
this process, the library might need to communicate with the hardware, an operating
system or the job scheduling system. As the library operates, the library creates
global data stored in its address space. With MPI Sessions, the library runtime data
will be stored partially in a local Session object.

Various MPI operations will act differently on the library data. There are multiple
approaches to implement MPI message sending in the underlying library. For
example, there are different ways to realize the MPI_Send function[9] in an MPI
library. One example is to wait for the recipient rank to call MPI_Recv and then
send the message. In this case, the MPI_Send function behaves like the synchronous
MPI_Ssend. Another valid implementation of MPI_Send it to leverage direct memory
access. In this case, the receiving process copies the data from a temporary buffer of
the sender’s process space into its own. Section 3.4 of the MPI-3 standard contains
more information on different modes of message passing[9].

With MPI Sessions, runtime data like process set changes has to be distributed
across all relevant ranks. It remains open how and when this is achieved.

In this work however, the simulation layer will make it possible for a rank to
create new process sets. This is expected to occur quite frequently, namely with and
after each resource change. This information together with the resource changes
themselves must be available to all active processes of the application.

In our approach all process set and resource change data is stored centrally in the
resource manager’s process space. This approach will be further discussed in Section
4.2. This method takes away the need of synchronization and assures a consistent
state across all ranks at the cost of slower access times.

11

3. Core Concepts

3.2. MPTI’s Info Object

The Info object (MPI_Info type in C) was introduced with MPI-2 as an opaque object
that represents a key-value dictionary. Both the key and value are string types (char *
in C). Keys and values each have an implementation defined maximum length. MPI
defines multiple functions to access and modify the dictionary’s content[8]. Besides
these functions, the Info object is mainly used as an argument to give the underlying
MPI runtime some implementation-defined optimization hints. Some examples in-
clude MPI_Comm_spawn (see Section 2.3.1), MPI_Comm_connect and MPI_File_delete.
This mechanism allows an application to trade off between portability and perfor-
mance.

In the case of the MPI-4.0 draft, the Info object plays an important role and is an
argument to all MPI Sessions-related functions except for MPI_Session_finalize[10].
The rationale behind this is that MPI Sessions and its process sets provide a tight
interaction with the runtime. Many aspects of process sets are implementation
defined, e.g., which specific process sets are available to the application. These
questions among others can be answered by implementation defined keys in the Info
objects passed to the Sessions-related functions.

The Info object is also an important aspect of the API provided by libmpidynres,
the library that is presented in this thesis. Similar to the use case stated before, it
is often used in the API to give some implementation defined hints. Furthermore,
the Info object is used as a designated return value of a function, with respective
key-value items (see MPIDYRNES_get_psets in Section 5.4).

As a consequence of the resource manager client-server model described in Section
4.2, the Info object has to be serialized internally by libmpidynres and communicated
via MPI across ranks.

3.3. Computing Resource

In general, the term Computing Resource describes an arbitrary component of a
computing system that can be measured and is limited by some aspect. Ideally,
a dynamic resource scheduler would be able to not only dynamically change an
application in terms of processing power, but also dynamically change other resources,
e.g., available memory per process, GPU nodes, caches.

In this work, computing resources are limited to CPU cores and processes bound
to these cores. libmpidynres uses existing processes to simulate computing re-
source addition and removal. This is achieved by taking the processes contained
in MPI_COMM_WORLD and simulating the availability of a process by hiding or reveal-
ing the process from the application using process sets. Also, libmpidynres uses a
client-server model with a designated resource manager hidden from the applica-

12

3.4. Process Set

tion. As a consequence, only the processes with rank 1...n-1 are available to be
scheduled /managed.

3.4. Process Set

The MPI Sessions model introduces a new concept called process set[20].

A process set represents a set of computing resources provided by the runtime.
It can be used to create an MPI group which then can be used to create an MPI
communicator. It is uniquely identified by a name expressed in a URI-like format[16].
This format is useful, because it allows the separation of sets by common attributes
into namespaces and subcategories. The MPI Standard draft reserves the “mpi://”
prefix for process set names[10].

Additionally, the latest MPI-4.0 draft states that a process set caches key-value
tuples which can be queried by the application as an MPI Info object[10].

To which extent process sets are shared and synchronized between processes is
not specified. However, it is clear that different processes can have different views
on the process sets provided by the runtime and have a different set associated with
the same name. An example for that is “mpi://SELF”, a process set that has to be
defined by the runtime and should always contain solely the querying process[10].
Besides “mpi://SELF”, there exists another predefined process set: “mpi:/ /WORLD".
“mpi://WORLD” contains all processes that were started initially by the runtime and
would be part of MPI_COMM_WORLD in previous MPI versions.

Figure 3.1 shows an example how process sets of an application might look like.
Five processes were started initially. All of them are contained in the “mpi:/ /WORLD”
process set. In the figure, the process sets prefixed with “hwloc://” represent process
sets allocated by the mpi library by communicating with the runtime and discovering
the hardware locations of processes. Process sets that start with “app://” stand for
process sets created by the application by asking the MPI library to create the process
set. According to the MPI-4.0 draft, a process should only be able to query for process
sets that it is part of[10]. This is highlighted by the green box in the figure. When
Process 1 queries for available process sets, the MPI library should respond with
“mpi:/ /SELF”, "hwloc:/ /numa/0”, "app:/ /atmos/task/0” and “mpi:/ /WORLD".

In libmpidynres, an application can create new process sets by combining two
process sets into a new one. The operations allowed are union, intersection and
difference. This mechanism will be described further in Section 5.4.

Also, in libmpidynres, the simulated MPI environment can create new process
sets besides “mpi://SELF” and “mpi://WORLD”. This happens during resource
changes. Simulating arbitrary process sets like hardware locations can be achieved
easily by extending the source code of libmpidynres. The process sets created by
libmpidynres are prefixed with “mpidynres://”.

13

3. Core Concepts

mpi://WORLD

. .
r 1

app://atmos/task/0 app://atmos/task/1 app://atmos/task/2

. - T e
r L] r L r |

hwloc://numa/0 hwloc://numa/1

- A

mpi://SELF mpi://SELF mpi://SELF mpi://SELF mpi://SELF

. - A .. A A

Process 1 Process 2 Process 3 Process 4 Process 5

Figure 3.1.: The process sets of an example application. Process sets are represented
as curly brackets. Process 1’s view on the process sets is highlighted in
green.

In this work, process sets are immutable. This means that the name of a process set
specifies only the same set of computing resources while its valid. This avoids race
conditions when creating groups out of process sets. Once one of the processes exits,
the process set becomes invalid and trying to create a group out of a process set fails.

In the MPI Sessions workgroup, a naming scheme using version numbers was
discussed. For example, “mpi://WORLD/0” contains the initially started computing
resources. As the number of processes for an application changes, new process sets
appear named “mpi://WORLD/1”, “mpi://WORLD/2” and so on. Each of these
process sets contain all active computing resources at the moment of the process
set’s creation. This naming scheme solves the problem of race conditions in mutable
process sets. However, the processes still have to agree on a version number to
use. Currently, libmpidynres does not support these versioned process sets. Process
set names besides “mpi:/ /WORLD” are created by libmpidynres and consist of a
“mpidynres://” prefix, followed by a random string.

14

3.5. Resource Change

3.5. Resource Change

A resource change describes a change to the available computing resources of an
application during its runtime. Resource changes allow the job scheduling system to
optimize the usage of available cores.

In libmpidynres, resource changes are driven by process sets. For each resource
change, a new process set is created. If the resource change adds new resources, the
new process set will contain all processes that will be added to the application. If
the resource change removes existing resources, the new process set will contain the
processes that are currently part of the application that should be removed.

In this work, the application has to query for resource changes on a regular basis.
Resource changes are imposed by the runtime and in the case of a new resource
change, the resource change type and process set name will be returned by the query.
To apply the resource change, the application accepts the resource change. Processes
that are added will then be started by the runtime. If resources are removed, the
application has to quit the processes by itself.

libmpidynres only supports either addition or removal of resources with a process
set and not both addition and removal at once. As a consequence, load balancing
is simplified. When resources are added, using process set operations, a connection
between the main application and the newly created process set can be accomplished.
Now, the application can load balance together with the newly created processes.
In the case of resource removal, the application will have to load balance before
accepting the resource change. This means that data is transferred from the processes
that will shut down to the processes that will keep on running.

Due to the proof-of-concept nature of libmpidynres and its implementation as a
simulation layer, the runtime cannot preemptively “kill” running processes. Malicious
applications that do not correctly shutdown their resources cannot be handled by
libmpidynres.

15

4. Realization of the Simulation Layer

In this chapter, an overview of the implementation of libmpidynres is given. First,
the general architecture and the library-application interaction is described. Then, the
internal communication of libmpidynres is explained. Afterwards, a closer look is
taken on how process sets and resource changes are implemented. Finally, a short
overview of the software development approach taken is provided.

4.1. Simulating the Runtime on top of MPI

The process of creating an MPI Sessions simulation layer for MPI applications can
follow different goals and provides multiple challenges.

In this case, one of the goals of the simulation layer is the experimentation with the
MPI Sessions API and environment. Therefore, a C program using the simulation
layer ideally should be able to use the MPI Sessions API as if the API was part of the
underlying MPI implementation itself. Furthermore, the simulation layer runtime
behavior ideally should resemble the MPI Sessions runtime as close as possible. This
means that the logical changes that result from API calls should be close to the
specification in the MPI-4.0 draft[10]. On the other hand, the usage of the simulation
layer should remain simple and as platform independent as possible.

To reach these goals, the simulation layer is implemented as a C library called
libmpidynres, consisting of C header files and the library shared object which
depends on MPI. The source code is written in C and only relies on MPI and a valid
C runtime. As a consequence, libmpidynres can be compiled on all systems with
MPI support. Furthermore, this ensures ABI compatibility and ease of use, because
compiling an application with the library only consists of linking the application’s
source file against the library. Alternatively, the application can be compiled against
libmpidynres’s source code if there are compatibility issues between the MPI library
that libmpidynres was dynamically linked against and the MPI library the application
wants to use.

To keep close to the ideal API of MPI Sessions, one solution would be to expose
the MPI Sessions API in a header called mpi.h. This would allow the application
program to resemble an MPI application if MPI Sessions was included in the MPI
standard and would allow the simulation layer to disable/wrap real MPI functions.
However, there are multiple downsides to this approach.

17

4. Realization of the Simulation Layer

First, installing the header under this name into a system will either overwrite the
existing MPI library’s header file or at least create conflicts when compiling MPI
programs (a compiler might use the wrong header file).

Another problem is the increased complexity of the library’s code: If the simulation
layer library does not wrap a function from the MPI library, both libraries may
be linked together statically, leading to less flexibility as users cannot change (i.e.
update) the used MPI library independently. If the simulation layer library wants
to wrap certain functions from the underlying runtime library it will either have to
use complex symbol renaming or adjust the MPI library’s source code to rename
functions as otherwise there will be duplicate symbols when linking the libraries.

A third problem of using the mpi.h header name is that due to the simulating
nature of the library, some setup/cleanup will have to be performed before the
application environment will resemble the MPI Sessions environment. For example,
the underlying MPI runtime still has to be globally initialized and finalized.

4.1.1. Application Wrapper

Because global MPI initialization and cleanup is still necessary when simulating MPI
Sessions on top of MPI, the design of libmpidynres splits the application program
into two distinct parts: The application wrapper and the simulated application.

The application wrapper uses the mpidynres_sim.h header and is aware of the
simulation layer. It has to initialize MPI, configure libmpidynres and then start
the simulation layer, passing a communicator object to libmpidynres. The latter
is achieved with the function MPIDYNRES_SIM_start which is collective, i.e. has to
be called by all ranks of the communicator used. After the simulated application
is done, the wrapper has to clean up and finalize MPI. The application wrapper
implements the C main function and passes the simulated application entry point to
libmpidynres.

The simulated application uses the mpidynres.h header which exposes the MPI
Sessions API and a process set and resource change management APIL It has a
separate entry point which is passed to 1ibmpidynres by the application wrapper. The
simulated application is running in a simulated Sessions environment that provides
process sets and resource changes. How this is implemented will be discussed in
Section 4.2.

Figure 4.1 illustrates how these two header files are used and how entry point
information is passed to libmpidynres.

To ease the usage of libmpidynres, when defining MPIDYNRES_MAIN before in-
cluding mpidynres_sim.h in the C code, a default wrapper is included which im-
plements a main function which will pass MPI_COMM_MAIN and a user defined int
MPIDYNRES main(int argc, char *argv[]) to libmpidynres.

18

4.1. Simulating the Runtime on top of MPI

10

11

12

13

14

10

application_wrapper.c

#include "mpi.h"
#include "mpidynres_sim.h"
/*
* Simulation aware code uses the "mpidynres_sim.h" header

*/

int main(int argc, char *argv[]) {

MPI_Init(&argc, &argv);

myconfig.base_communicator = MPI_COMM_WORLD;
MPIDYNRES_SIM_start(&myconfig, argc, argv, application_entry);

MPI_Finalize();

application.c

#include "mpi.h"
#include "mpidynres.h"
/*
* The MPI Sesstons API is available in the "mpidynres.h" header

*/
int application_entry(int argc, char *argv[]) {

// Use your favorite MPI Sessions functions here

return O;

Figure 4.1.: Application wrapper example using libmpidynres.

19

4. Realization of the Simulation Layer

4.1.2. Library Interfaces

Due to the design of libmpidynres, both the application wrapper and the simulated
application should include the original MPI header themselves, as general MPI
functions are not implemented by libmpidynres.

Both the application and libmpidynres access the MPI library independently.
That is why the wrapper has to initialize the MPI environment and also choose a
communicator to be used.

As a consequence, the application itself should not call any MPI functions that deal
with the initialization or finalization of MPI. Furthermore, libmpidynres cannot deal
with an application where a process suddenly exits (e.g., by using the exit syscall)
or fails in another non intended way, for example with a segmentation fault. A non-
simulated MPI Sessions implementation may be able to detect this and simply remove
the resource from the application. As a replacement for exit, a special function
called MPIDYNRES_exit is available in libmpidynres which a simulated application
can use to return from any point in its execution from the entry point function. In the
code example in Figure 4.1, this has the same effect as the return statement in line
9 in application.c. This mechanism is implemented using the C standard library
functions setjmp and longjmp.

Also, the application should not use any MPI objects which were not generated by
libmpidynres, e.g., MPI_COMM_WORLD. However, it can create new MPI objects based
on objects returned by libmpidynres calls. These limitations cannot be enforced by
libmpidynres. It expects a non-malicious application that respects these rules.

Figure 4.2.: The different components of a simulated MPI Sessions environment using
libmpidynres.

20

4.2. Resource Manager and Computing Resources

4.2. Resource Manager and Computing Resources

To achieve process set and resource change consistency, libmpidynres uses a client-
server architecture with a dedicated resource manager acting as a server and computing
resources acting as clients. The resource manager is responsible for the process set
management, the resource scheduling and the computing resource startup. While
a more complicated peer-to-peer approach is possible, the resource manager avoids
unnecessary race conditions, is more feasible to implement and assures a consistent
state across all ranks.

4.2.1. Communication

The communication between the resource manager and the computing resources is
realized with MPI and is opaque to the application as it happens within libmpidynres.
It takes place on top of the communicator passed to MPIDYNRES_SIM_start. The
communicator used is included as a global symbol inside libmpidynres. This is
necessary because the communicator has to be hidden from the application and
storing it inside the MPI_Sessions object is not possible as it will be constructed while
the simulated application is already running.

Communication exchanges usually start by a computing resource sending an
MPI message with a request-specific tag and request-specific data. The only time a
communication exchange is not started by a computing resource is when the resource
manager sends a change-state command to a computing resource. A communication
exchange usually ends with the resource manager sending an answer message with
a request-specific answer tag. This answer can contain either request-specific data
or an error code. During a communication exchange, more MPI messages may be
sent between the resource manager and the computing resource depending on the
request. This is due to variable-length data that has to be sent in some cases and
special serialization routines for the exchange of MPI_Info objects.

Depending on the data, either MPI's primitive datatypes are used or new datatypes
are constructed using MPI_Type_create_struct. The MPI tags used for these mes-
sages are defined with an enum statement at the beginning of comm.h, an internal
C header. The corresponding C source file comm.c contains the implementation
of the MPI_Info serialization functions and the datatype construction mechanism.
The resource manager communication endpoint and the computing resource com-
munication endpoint are implemented in the mpidynres.c and scheduler.c files
respectively.

21

4. Realization of the Simulation Layer

4.2.2. Control Flow & State Signaling

After the application wrapper has called MPIDYNRES_SIM_start, the processes enter
an MPI barrier on the communicator passed to the call. This is done to make sure
all processes are ready to start the simulated environment and to make sure other
non-obvious MPI functions used later will not get stuck due to a process not being
active.

After the barrier is passed, the processes assume different roles depending on their
rank in the communicator used. Rank 0 will act as the resource manager. Ranks
1...n-1 act as available computing resources. A computing resource starts in the
idle state. This means that libmpidynres calls MPI_Recv with a special tag reserved
for the change-state message type. Depending on the MPI implementation and the
underlying runtime used, the MPI_Recv could even lead to an actual idling CPU core
in the computer system. In the case of Open MPI], this is effect does not occur as it
schedules events using spinlocks in the user space leading to a busy loop[30].

A change-state message can either tell the computing resource to become active,
meaning to run the application, or to shutdown, meaning that the simulated environ-
ment is ending, and the control should be returned to the application wrapper. In the
case of a computing resource becoming active, setjmp is called and the application en-
try point is called with the argc and argv commands passed to MPIDYNRES_SIM_start
function by the application wrapper.

When an application process is done, either by calling MPIDYNRES_exit or by
returning from the entry point function, a message is sent to the resource manager,
so it can keep track of active and idle resources correctly and the computing resource
goes back to waiting for change-state messages using MPI_Recv.

A state diagram describing these steps can be seen in figure 4.3.

App. Wrapper

wrapper wants to start simulation
rank > 0

wrapper wants to start simulation
rank =0

Resource Manager
(barrier)

Computing Resource
(barrier)

all ranks ready all ranks ready

shutdown signal by res.manager

all shutdown signals sent

return from entry function

Computing Resource
(active)

Resource Manager.
(active)

Resource Manager
(shutdown)

> Computing Resource
(idle)

all resources returned/idle

start signal by res. manager

Figure 4.3.: State diagram showing different process stages during a simulation run.

22

4.3. Resource Manager Realization

4.3. Resource Manager Realization

The resource manager is used for process coordination, process set management and
resource change management.

The internal header scheduler.h declares the struct MPIDYNRES_scheduler type
which represents the resource manager. The header also declares a constructor and
a MPIDYNRES_scheduler_free function for the resource manager type. The resource
manager uses multiple datatypes and data structures for storing information about the
simulation state. These are declared in the internal header scheduler_datatypes.h.
Most data structures like sets and dictionaries are constructed using ctl, a 3rd-party,
header-only C data structure library[23]. Dictionaries are implemented with ctl’s set
datatype by storing the key inside the set element struct and exclusively using the
key field for the set element comparison function.

4.3.1. Request Handling

When the resource manager becomes active, it spends most of its time in the
MPIDYNRES_scheduler_schedule function which contains the main request loop. In
this function, multiple non-blocking, receiving MPI calls are made using MPI_Irecv,
one for each initial communication exchange message potentially coming from a
computing resource. Then, MPI_Waitany is used to wait for a request to complete.
Once a request completes, the resource manager starts to call a handler function
declared in scheduler_handlers.h. The handler usually interacts with the simulation
state and the requesting computing resource as described in section 4.2.1. After the
request has been handled, a new MPI_Irecv call is made so new requests of the same
type can be received again. Once there are no more active computing resources, the
loop is broken and the non-blocking requests freed.

Using this combination of MPI_Irecv and MPI_Waitany allows the scheduler to only
receive valid messages with a correct tag and correct MPI datatype. An alternative
could be a MPI_Recv using a single MPI_INT type. The received integer would then
represent the type of request to be performed and a request specific MPI_Recv call
could be used. However, this approach requires one more message to be sent during
the communication exchange, namely this first integer.

A consequence of the request handling design in libmpidynres is that the resource
manager is blocked during the handling of a request. While this approach guarantees
state consistency and avoids locks and race conditions on the resource manager’s side,
it has multiple downsides. There is a large performance loss by this blocking design.
Multiple requests arriving in a short timespan will be handled sequentially. There
are multiple scenarios where this situation is likely. One example is the querying of
process sets at the application start. Another downside is, if one of the communication
exchanges fails and the resource manager is left in a blocking MPI call, the resource
manager is stalled and further requests will never complete.

23

4. Realization of the Simulation Layer

4.3.2. Process Set Management

Computing resources are internally identified by their rank inside the communicator
used by libmpidynres. A process set is represented as a struct pset_node, contain-
ing the name, a set of integers representing the computing resources in the process
set and finally an MPI_Info object. The resource manager holds a dictionary with the
process set names as keys and with struct pset_nodes as values. “mpi://SELF” is
not stored in this dictionary as its contents vary depending on the process querying
the process sets. As a consequence, the resource manager’s request handlers have to
consider the edge case of “mpi://SELF”. To support multiple simulated applications,
a new dictionary would have to be added to separate the process sets from each
application.

The resource manager also tracks the state of process sets using a set of struct
process state objects. To conserve memory, only active and reserved processes are
managed. A struct process state also holds the names and sizes of process sets that
the process is part of. This is mainly used for performance reasons. As a consequence,
the addition and removal of process sets must modify these process states.

In this work, process sets are assumed immutable, meaning the computing resources
in a process set and the name of a process set never change. This avoids race
conditions that might occur when different computing resources query a process set
by its name, e.g., for creating a group. However, this approach means that process
set names change frequently and there cannot be a dynamic process set with the
same name. The latter could be useful for many scenarios, for example when the
environment wants to offer the application a set of resources with specific dynamic
characteristics.

The immutability of process sets also raises the question how process sets are
treated that are invalid because they contain inactive processes. This can easily
happen when a process calls MPIDYNRES_exit or returns from the simulation entry
function. As a consequence, all process sets that contained the process become invalid.

In libmpidynres, invalid process sets are removed globally after a process exits.
Groups created from the process sets are still valid. Communicators based on this
group become invalid. However, some MPI calls with the communicator will still
succeed. This is due to the fact that the process is still technically running in the
simulated idle state from MPI’s point of view. This means the underlying MPI library
will not complain when the communicator is used. However, an application should
not use these communicators anymore and in a non-simulated implementation of this
process set model, the communicator should become invalid so MPI functions that are
use this communicator as an argument fail. As a consequence, a programmer has to be
careful and use MPI_Barrier or similar synchronization functions between querying
process sets and process exits. For example, the resource manager might tell the
application that the processes contained in the process set “mpidynres:/ /change12345”

24

4.3. Resource Manager Realization

have to exit. Now a process would query the process sets its contained in and then
call MPIDYNRES _exit if “mpidynres://changel2345” is in the result. If one process
exits before the other processes have called the process set query function, the process
set will be freed and the other processes will not see “mpidynres://change12345” in
their query result although they might have been part of the process set. This leads
to an unintended state.

On the other hand, process sets containing reserved computing resources are valid
in libmpidynres. This is necessary so that the addition of new computing resources
under a new process name is possible. Creating a group from such a process set will
succeed. Creating a communicator from the group will fail, as there are no active
(in the libmpidynres terminology) processes that are part of the group. Once the
processes are started by the resource manager, they are active and no longer reserved
and communicators can be created.

Process sets are created in three circumstances: First, the “mpi://WORLD” is
created with all processes that are starting initially. Then, the resource manager will
create process sets for resource changes with the delta between the old processes
available and the new processes available after the resource change is applied. Lastly,
the application can use process set operations to ask the resource manager to create
new process sets out of existing process sets.

There are three process set operations available: union, intersection and difference. The
logic of these operations corresponds to the mathematical set operations of the same
name. The resulting set’s info object will hold information about the operation. The
info object can be queried by a process by calling the MPI_get_pset_info function.

4.3.3. Resource Change Management

In libmpidynres, processes are managed by the resource manager. With the startup
and shutdown mechanism described in 4.2.2, the manager can keep track of the
process state and turn idle processes active.

Resource changes are imposed by the resource manager on the application which
has to accept them. However, the resource manager cannot enforce resource changes
that remove processes from the application. This is due to the fact that the applica-
tion is in control of active processes. Malicious applications are not considered by
libmpidynres.

The resource change mechanism described in Section 3.5 means that an application
has to query for new resource changes using the MPIDYNRES_rc_get function on a
regular basis. If there are no resource changes, MPIDYNRES_RC_NONE is returned. If
processes are to be added or to be removed, MPIDYNRES_RC_ADD or MPIDYNRES_RC_SUB
are returned respectively and additionally the resource change process set name and
a resource change tag. Currently, only one pending resource change is allowed. If
a resource change is pending, any call to MPIDYNRES_rc_get will return no resource

25

4. Realization of the Simulation Layer

change. If there is a resource change, the application has time to inspect the new
process set and to do load balancing before it calls the MPIDYNRES_rc_accept function
using the resource change tag obtained previously. Once the accept function is called,
the resource manager starts the new processes or expects processes to have exited, i.e.
becoming idle.

In the case of resources being removed, the resource manager will keep track
whether all necessary resources have been shutdown or not. As long as there are still
resources running that should be removed, all resource change queries will result in
no resource change.

This mechanism leads to the multiple possible states a computing resource can
have from the resource manager’s point of view. These states are shown in Figure 4.5.

Internally, the resource manager saves resource changes in a dictionary holding
struct rc_info objects. These objects contain a resource change tag, a process set
name and a resource change type. The dictionary uses the resource change tag as
the key. Due to the current design, the dictionary will only contain one entry at
most. However, the dictionary data structure was chosen because it will make future
extension of libmpidynres easier, especially when it comes to multiple application
support.

4.3.4. Scheduling Approaches

The header scheduler_mgmt.h exposes a generic API for a scheduling interface.
Because of that, new scheduling mechanisms can be implemented easily. This
interface is used by the resource manager for resource change decisions. It can
track the application state by accessing the resource manager’s MPIDYNRES_scheduler
object that holds the dictionaries discussed in the previous sections.

After the application wrapper starts the simulation and the barrier is passed, the
scheduler_mgmt.h function MPIDYNRES_manager_get_initial_pset is used by the
resource manager to get the initially active processes. Then, the “mpi:/ /WORLD”
process set is created containing these processes. Finally the start message is sent to
these initial computing resources so that they become active. In the next step, the
scheduler enters the request handling loop (see 4.3.1).

Once the application queries for resource changes, the resource manager calls the
MPIDYNRES_manager_handle_rc_msg function from the scheduler_mgmt.h interface.
The scheduling interface implementeation then decides on the next resource change,
which then will be returned by the function call. Afterwards, the resource manager
registers the resource change in its data structures and returns the resource change to
the calling computing resource which then returns it to the application.

To allow more direct communication between the scheduling interface and the
application, libmpidynres offers a function called MPIDYNRES_add_scheduling_hints.
Using this function, the application can send an MPI_Info object to the scheduling

26

4.3. Resource Manager Realization

uninitialized

simulation layer is started

process shuts down

resource change with process
(resource addition)
accepted
shutdown
reserved
o application done)
init. start resource change is accepted
resource change is accepted
proposed
shutdown

v o

active resource change with process
(resource removal)

Figure 4.4.: Diagram showing the different states a computing resources can be in.
States where the application has control over the resource are highlighted

in green.

27

4. Realization of the Simulation Layer

interface and obtains an MPI_Info object as an answer. This mechanism can be used
in the future to generate resource changes that fit the application needs.

Another way the application can configure the scheduling interface consists of
the application wrapper passing an MPI_Info object to the resource manager in the
config argument of MPIDYNRES_SIM_start. This info object is also accessible by the
scheduler_mgmt.h interface. This can be useful to specify properties of the initial
process set or change scheduling parameters without having to change the simulated
application’s code by adding MPIDYNRES_add_scheduling_hints calls.

Two example implementations of the scheduler_mgmt .h interface are included in
the libmpidynres source code. These can be found in the src/managers directory. To
use one of them, a copy or symbolic link should be placed in src directory with the
name scheduler_mgmt.c.

Increasing-Decreasing Scheduling

This scheduling types starts with one initial active computing resource and incremen-
tally adds one computing resource each until all available computing resources are
active. After that, computing resources are removed one by one until one computing
resource is left. Then, resources are added again one by one and so on.

In the libmpidynres implementation of this scheduling approach, the initial com-
puting resource that is started is the one with rank "1" in the underlying communicator
used. Afterwards, the computing resources are added in the order of their ranks in
the communicator. Removal happens in the opposite direction. This means that the
highest rank will be removed first, then the rank one lower and so on.

Random-Difference Scheduling

The random-difference scheduling approach adds and removes resources randomly.

For that, a normal distribution is sampled using the Box-Muller algorithm[2]. A
negative value means the removal of resources, a positive value the addition of
resources.

The resulting value is rounded and sanitized to avoid invalid values, e.g., by
removing equal or more resources than are active or adding more resources than
available.

Finally, the process set is generated by either applying a random permutation
on the active resources’ internal id (in the case of removing resources) or on the
available resources’ internal id (in the case of adding resources) using the Fisher-Yates
shuffle[21]. Again, the internal id corresponds to the rank inside the underlying
communicator used. Then, the number of processes necessary are taken from the
beginning of the permutation result.

28

4.3. Resource Manager Realization

Increasing-Decreasing Scheduling

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Random-Difference Scheduling
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15
0 1 2 3 4 5 6 7 8 © 10 " 12 13 14 15

Resource Change: Add {13}

Resource Change: Add {14}

Resource Change: Add {15}

Resource Change: Remove {15}

Resource Change: Remove {14}

Resource Change: Remove {13}

Resource Change: Add {1,13}

Resource Change: Add {6}

Resource Change: Remove {1,4}

Resource Change: Add {15}

Resource Change: Remove {5,12,13}

Resource Change: Add {1,213}

Figure 4.5.: The two scheduling algorithms illustrated on a communicator of size 16.
The red process is the resource manager. Idle processes are shown in blue
and active processes are shown in green.

29

4. Realization of the Simulation Layer

4.4. Computing Resource Realization

libmpidynres uses a designated resource manager rank to manage the simulated
runtime data. Other ranks are available as computing resources for the resource
manager to schedule. This section will focus on some aspects of the implementation
of the computing resource interface that is available to the application.

4.4.1. Session Object

One of the core ideas behind MPI Sessions is the introduction of a MPI_Session object
which acts as a local handle to the MPI library and stores MPI runtime data.

In libmpidynres, the MPI runtime is already initialized globally and the session
object does not need to be used for local MPI initialization. As a consequence, the
MPI_Session object only holds a unique session id which is passed together with
most requests to the Resource Manager. Currently, the session id is ignored by the
Resource Manager but future work that targets multiple sessions and applications
support can use the session id to determine the request’s source.

The special value MPI_SESSION_NULL is used as a designated error value. In libmpi-
dynres it equals the C value NULL. When a session object is finalized, it is replaced
with the MPI_SESSION_NULL object. The application interface checks the passed session
object against this value and will return an error if it is used. Using this mecha-
nism, the usage of a session after the MPI_Session_finalize call can be detected and
avoided.

The MPI_Session object is initialized and finalized using MPI_Session_init and
MPI_Session_finalize.

4.4.2. From Process Set to Communicator

Traditionally, MPI communicators are created by the application when calling an
MPI function using an existing communicator as an argument. As a consequence,
communicators are indirectly linked to MPI_COMM_WORLD which is not a part of the MPI
Sessions model. To solve this issue, a new function MPI_Comm_create_from_group
was proposed by the MPI forum in the MPI-4.0 draft[10]. Unlike previous MPI
functions, this function allows to create a communicator from a group without the
need of a parent communicator.

There are two steps a MPI Sessions application must complete to successfully create
a communicator based on a process set. First, the function MPI_Group_from_session_pset
is called with the process set name as an argument to create an MPI_Group object con-
taining the processes of the process set. Afterwards, the MPI_Comm_create_from_group
function is called to create a communicator from this group.

30

4.4. Computing Resource Realization

In libmpidynres, the same mechanism is available to the simulated application. The
MPI_Comm_create_from_group function simply wraps the MPI_Comm_create_group
function and passes libmpidynres’ communicator as the parent communicator. The
MPI_Comm_create_group function is only collective over the members of the passed
group. The same is therefore true for the MPI_Comm_create_from_group function.
This has the disadvantage that when a group is passed to the function while one
of the group members is in libmpidynres’ idle state, the application runs into a
deadlock situation. Ideally, an error value should be returned by this function instead
which would be possible by additional communication with the resource manager.
However, this approach would suffer from race conditions and libmpidynres assumes
a simulated application with correct behavior anyway. Also, this deadlock can be
easily detected with a debugger.

The MPI_Group_from_session_pset function is the most complex routine on the
computing resource’s side of libmpidynres. As all process set information is stored
in the resource manager, it first has to be sent to the computing resource. The set
is sent as an int array with respective size. Due to the immutability of process sets,
a caching mechanism can be implemented either by the application (reusing the
group object from the first call instead of making another call) or in future versions
of libmpidynres by libmpidynres itself. Afterwards, the MPI_Comm_group function
is called on libmpidynres’ communicator to get the group used by libmpidynres.
Finally, MPI_Group_incl is used with the group previously created and the received
int array to get a group containing the right subset of the libmpidynres group that
includes the processes contained in the process set.

31

4. Realization of the Simulation Layer

4.5. Software Development Approach

In this section, the structure and features of libmpidynres are explained from a
software development standpoint.

4.5.1. Debugging Features of libmpidynres

Debugging parallel applications is difficult. Due to non-deterministic behavior, bugs
like race conditions can occur in one application run and disappear in the next
one. To help the development of libmpidynres applications and libmpidynres itself,
libmpidynres introduces a handful of features useful for tracing and finding bugs.

Error Handling

Most of libmpidynres’ functions return either a 0 value on success or an integer # 0
on failure. If an irrecoverable error occurs, the operating system process is shutdown
and a meaningful error together with the source line number and source file of the
error will be printed to stderr.

Because libmpidynres is a separate library on top of MPI, it cannot throw custom
MPI errors on its own. As a consequence, not all functions can satisfy their com-
plete specification in the MPI-4.0 draft. For example, the errhandler argument to
MPI_Sessions_init is ignored.

Debug Output

libmpidynres supports debug output to stderr. This feature can be enabled and
disabled by setting or unsetting the MPIDYNRES_DEBUG environment variable.

The debug output consists of a small prefix indicating the process rank in the
libmpidynres communicator. Also, consecutive ranks will have their debug output
printed in different colors to ease the debugging when all MPI processes print to a
single terminal. Example debug output is shown in Figure 4.6.

In a GUI environment, it is generally recommended to start each process in a
different terminal. This can be achieved by issuing;:

$ mpirun <MPIRUN_ARGS> <TERMINAL_APPLICATION> -e ./myapp
instead of:

$ mpirun <MPIRUN_ARGS> ./myapp

32

4.5. Software Development Approach

libmpidynres: (1|

1ibmpidy : m from group of s 2 where i have rank 0

libmpidynres: (2/4) says: Answer size: 2

Got group, now creating comm

libmpidynres: (2|4) says: Creating comm from group of size 2 where i have rank 1
New round on pset mpidynres://op_6w39aiyva7yx4e9

Figure 4.6.: Colored debug output of libmpidynres. White text is application output.

Process State Logging

Another feature of libmpidynres is the logging and visualization of process state
changes to a file. This feature can be enabled by setting the MPIDYNRES_STATELOG
environment variable to a filename.

A line of the statelog output will contain the time passed from the start, a list of
states for each process, each with a color and an uppercase letter, similar to the linux
top/htop utilities, and a small text describing the event that lead to the state change.
An example state log output is shown in Figure 4.7

11111111112222222222333333333344444444445555555555666666666677777777778888888888
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

| 18803. 2 d 1 proposing to start crs

| 18805.) Starting cr id 4

| 18805. 2 g 1 Starting id 46

| 18805. PRP. Starting id 56

| 18805. : Starting id 79

| 18805. 2 Starting id 83

| 18805. Starting id 85

| 19699. S SRS SS SRRS S S S) S 51 proposing to shutdown
crs

| 19703. cr id 7 returned/exited
| 19703. cr id 80 returned/exited
| 19703. cr id 67 returned/exited
| 19703. cr id 27 returned/exited
| 19703. cr id 16 returned/exited

Figure 4.7.: Example state log of libmpidynres. Legend: R=running, I=idle,
=reserved, S=proposed shutdown, A=accepted shutdown.

33

4. Realization of the Simulation Layer

4.5.2. Source Code and Project Structure

During the course of this thesis, libmpidynres has grown from being a single C file
with a small amount of functions to a larger software project, containing about 2.500
single lines of C code in 18 different files in its src directory and about 600 single
lines of C code in its example directory.

To handle the increasing complexity and the management requirements, a solid
project structure and source code structure was designed. The repository structure
can be seen in Table 4.1.

Directory Item

Explanation

3rdparty Third-party code. The ctl project headers used for data struc-
tures are in this directory (MIT license) [23].

build Compiled code. Will be created during compilation.

doc Documentation. Doxygen output will be generated in this
directory.

examples Examples. Multiple C files that show example applications with
increasingly more features of libmpidynres.

public Application Headers. Symbolic links to the headers that will be
installed to the system (mpidynres_sim.h, mpidynres.h).

src Source Code. The source code of libmpidynres.

tests Unit Tests. Some unit tests are contained in this direcotry.

ARCHITECTURE.md A Markdown file describing how to navigate the source code.

Makefile The Makefile used for compiling, installing, testing, and docu-
mentation (see Appendix A).

README.md A Markdown file giving a small introduction to the project.

run_tests.sh

.clang-format

A Bash script for running and evaluating unit tests from the
tests directory.
clangfmt configuration file.

Table 4.1.: Directory items of the repository root.

Build artifacts either go into the build or the doc directory, depending on whether
the source code is compiled or the documentation is built. The Makefile contains
targets for building the source, installing the source into a POSIX-like system, building
and running tests, building examples and generating and viewing the documentation.
How these targets are used is explained in the Appendix A.

The source code is structured into logical components. Resource Manager code
is prefixed with scheduler_. Application interface implementations begin with
mpidynres. comm.h contains serialization code and MPI datatype construction code.

34

4.5. Software Development Approach

logging.h and util.h contain debugging and miscellaneous code.

4.5.3. Software Tools

The library repository is tracked via the version control tool git[29].

For linting and autoformatting C code, the tool clangfmt was used[5]. This assures
a consistent code style among the source files. The code follows the Google C++ Style
Guide!.

For documenation, Doxygen-Style comments are contained in the source code. The
tool Doxygen can then be used to extract these comments and output an HTML
document[28].

The GNU Debugger (gdb) was used for debugging[11]. For this, Open MPI was
compiled with debug symbols and libmpidynres with the compiler flags -ggdb
-00. Also, the Arm DDT debugger was used on the Linux Cluster of the Leibniz
Rechenzentrum to debug libmpidynres[27]. The debugger is aimed for parallel
programs and contains a GUI interface with access to the source code position and
variables of the MPI processes. Valgrind’s memcheck tool was used to detect potential
memory leaks which can often occur when constructing MPI Objects and not freeing
them afterwards[24].

To avoid time-wasting implementation and debugging of data structures, a third-
party library called ct1 was used[23]. ct1 is a header-only C library which implements
multiple container data structures.

4.5.4. Software Evaluation

The library was developed on a linux desktop system running on an Intel Core i6200U
CPU, a dual core processor with four hardware threads. To support jobs containing
more ranks, Open MPI’s oversubscribe feature was used.

Furthermore, the library was run and tested on the Linux Cluster of the Leibniz
Rechenzentrum with job sizes up to 256 cores in total using both Open MPI and Intel
MPI.

Ihttps://google.github.io/styleguide/cppguide.html

35

https://google.github.io/styleguide/cppguide.html

4. Realization of the Simulation Layer

4.5.5. Included Examples

The examples directory contains multiple examples shown in Table 4.2. The examples
can be compiled via make examples. The compiled binaries will be placed into the

build/examples directory.

The examples contain commented source code showing different features of the
libmpidynres API and should be read carefully by all users of libmpidynres.

Example

Explanation

01_hello_world
02_sessions
03_pset_handling
04_static_communicator
05_pset_operations
06_resource_changes

07_simple_changes

Example showing the Application Wrapper and the Simula-
tion start.

Example showing how to create and finalize the MPI_Session
object.

Example showing how to query and display process set infor-
mation.

Example showing the creation of a functioning communicator
from “mpi://WORLD”.

Example showing how to create new process sets with process
set operations.

Example showing how resource changes can be handled in a
loop based application.

Simplified version of the 06_resource_changes example.
This application is presented in Chapter 6.

Table 4.2.: Examples contained in the libmpidynres repository.

36

5. Library Interface

In this chapter, the interface provided by libmpidynres is presented.

The functions are presented in a similar style to the one used in the MPI standard
document[9]. For each function, the C signature is shown. Then, the function
arguments are listed and explained. Arguments that are passed to the function
and are not modified are marked as IN(for input). When the function modifies
the object that an argument points to, the argument is marked as OUT(for output).
If the argument is both used as an input and output argument, it is marked as
INOUT. Also, a short overview of the differences between the MPI-4.0 draft version
of the function und the libmpidynres version is given. These differences are either
due to implementation restrictions (for example, the simulated layer cannot invoke
errhandlers) or due to shortcomings (in the context of dynamic resources) of the
MPI-4.0 functions proposed by the MPI Forum.

5.1. Environment Functions

int MPI_Session_init(MPI_Info info, MPI_Errhandler errhandler,
MPI_Session *session);

IN info info object to be associated with the session
IN errhandler dummy argument for compatability
OUT session new session object

Differences to MPI-4.0 draft: The info argument does not have to contain the
mpi_thread_support_level key and does not affect the behavior of libmpidynres.
The errhandler argument is ignored.

The MPI_Session_init function is used to create a new MPI_Session object. It
should be called at the beginning of the application before any MPI communication
takes place. Multiple session objects can be constructed and nested in libmpidynres.
However, the behavior of libmpidynres functions will not differ between the session
objects. Future work may distinguish between different sessions using the session
id that is sent to the resource manager with each call. The info argument currently
does not affect the behavior of libmpidynres. Future work could define keys with a
specific names to change the behavior of libmpidynres. However, the info argument

37

5. Library Interface

will still be copied and stay associated with the session. The passed info object must
still be freed by the application). The errhandler is currently unsupported as the
MPI_Errhandler type is opaque to libmpidynres as it is built on top of MPI. As a
consequence, libmpidynres cannot call the error handler itself.

int MPI_Session_finalize(MPI_Session *session);
INOUT session session to finalize
Differences to MPI-4.0 draft: The session argument passed was changed

from IN to INOUT as the argument will be set to MPI_SESSION_NULL.
MPI_Session_finalize is not collective in libmpidynres.

MPI_Session_finalize is used to destruct an MPI session and has to be called on
each constructed session object before a process exits. It frees the session argument
and replaces it with MPI_SESSION_NULL. Although the draft specifies the replacement
of session with MPI_SESSION_NULL, the argument is marked as “IN” in the draft.
This is fixed in this specification. The function call is not collective in libmpidynres
because dynamic resources lead to the removal of only a subset of available processes
at a time. If the call was collective, these processes would not be able to shut down
correctly.

int MPI_Session_get_info(MPI_Session session, MPI_Info *info_used);

IN session session info to get info about
OUT info_used info associated with session

Differences to MPI-4.0 draft: No differences.

MPI_Session_get_info is used to obtain hints associated with the session argu-
ment. A newly created MPI_Info object is created that contains key-value pairs
and returned in the info_used argument. The info object has to be freed by the
application.

According to the MPI-4.0 draft, the key-value pairs returned are implementation
defined but have to contain all implementation defined hints actively used or hints
containing default values. While not explicitly stated in the draft, it is assumed the
mentioned hints are the ones passed to MPI_Session_init.

In libmpidynres, there are no supported keys for MPI_Session_init’s info ar-
gument. Instead, all key-value pairs passed to the initialization function stay as-
sociated with the session object and will be contained in the info object returned
by MPI_Session_get_info. This can prove useful for coordination among different

38

5.2. Process Set Discovery Functions

software components sharing the same MPI process.

This function also plays a key role in resource change coordination and process
discovery. The key-value pairs passed with the info object of MPIDYNRES_RC_accept
(see section 5.5) will be available for processes started through a resource change.
This can be useful to tell the newly created processes the name of the process set
that the processes can use for communication with other application processes. This
mechanism is used in the application demonstrated in Chapter 6.

void MPIDYNRES exit();
Differences to MPI-4.0 draft: This function does not exist in the MPI-4.0 draft.

This function is libmpidynres specific and has the same effect as returning from
the application entry function, i.e. terminating the simulated process. It should be
used by the application instead of the exit function provided by the C standard
library. The latter would lead the OS process to terminate and libmpidynres to break.

5.2. Process Set Discovery Functions

Process sets are used to group available processes and to manage dynamic resource
changes. As previously shown in Figure 3.1, a process can be part of multiple process
sets. The MPI-4.0 draft specifies how to query these process sets. The functions
proposed in the draft seem to expect the available process sets to be of static nature
and do no consider dynamic resources using process sets. As a consequence, the
process set query mechanism was changed in libmpidynres.

int MPI_Session_get_psets(MPI_Session session, MPI_Info info,
MPI_Info *psets);

IN session session used

IN info info object containing runtime hints

OUT psets info object containing process set names as keys and process
set sizes as decimal values

Differences to MPI-4.0 draft: This function replaces MPI_Session_get_num_pset
and MPI_Session_get_nth_pset from the MPI-4.0 draft.

The MPI_Session_get_psets function is used to query process sets that the calling
process is part of. The info argument can be used to add hints to the query. In
libmpidynres, there are no keys supported yet. In the future, a possible use case

39

5. Library Interface

of the info argument could be used to filter the process sets by some criteria. The
resulting process sets will be available in a new MPI_Info object in the psets argument
which must be freed by the application. The keys of the MPI_Info object are the names
of the process sets and the corresponding value is a string containing the decimal
representation of the process set size , i.e. the number of processes contained in the
process set. The string can be converted to an integer using the atoi function from the
C standard library. Note that this mechanism implies that MPI_MAX_PSET_NAME_LEN
< MPI_MAX_KEY_LEN.

The MPI-4.0 draft uses MPI_Session_get_num_keys and MPI_Session_get_nth_pset
to query process sets. The idea is to have a virtual array of process sets, to which
the runtime can only append new entries. The MPI_Session_get_num_keys function
returns the current length of the array and the MPI_Session_get_nth_pset returns
the process set at a specific index. To avoid race conditions, the draft is very restrictive
when it comes to changes to the array:

“An MPI implementation is allowed to increase the number of available
process sets during the execution of an MPI application when new process
sets become available. However, MPI implementations are not allowed to
change the index of a particular process set name, or to change the name
of the process set at a particular index, or to delete a process set name
once it has been added.” (MPI-4.0 draft, p.496[10])

This strictness combined with the immutability and frequent change of process sets
in libmpidynres would lead to a continuously growing array which would need an
increasing amount of memory to maintain and, depending on the implementation,
would lead to slower access times. Furthermore, during an application run with
libmpidynres, the number of active process sets is expected to stay low. Consequently,
the majority of the array’s indices would consist of invalid process sets which already
would have been freed by the resource manager.

The usage of one function to query the process sets removes the danger of a
race condition during two separate calls (which is likely one of the reasons for the
immutability of the virtual array in the MPI-4.0 draft). One issue that could be seen
with this single call is that all process set names and sizes have to be provided by
the runtime and transferred to the application which could be inefficient. However,
as previously stated, the number of active process sets is expected to stay low in
libmpidynres. This fact justifies that the answer contains all process sets. For
increased efficiency, some filtering mechanism could be implemented using the info
argument.

40

5.2. Process Set Discovery Functions

int MPI_Session_get_pset_info(MPI_Session session,
const char *pset, MPI_Info *info);

IN session session used
IN pset name of process set to query
OUT info info associated with the process set

Differences to MPI-4.0 draft: No differences.

This function allows the application to query for properties of a process sets. The
pset argument contains the name of the process set to query. The property will be
returned in the info argument which has to be freed by the application.

libmpidynres supports the keys shown in Table 5.1.

Key Process Set Type

Value

all

mpi_size

all

mpidynres_name

mpidynres_op created by pset

operation

mpidynres_op_parentl created by pset

operation

mpidynres_op_parent2 created by pset

operation
mpidynres_rc created by re-

source change
mpidynres_rc_type created by re-

source change
mpidynres_rc_tag created by re-

source change

Decimal representation of number of pro-
cesses contained in the process set.

The name of the process set.

The type of operation applied (One of

union, intersect, difference).

First argument to the process set operation.

Second argument to the process set opera-
tion.

Always the value true.

The type of resource change (either add or
sub).

Decimal representation of tag used for re-
source change.

Table 5.1.: Info keys supported for process sets.

41

5. Library Interface

5.3. Group and Communicator Functions

int MPI_Group_from_session_pset(MPI_Session session,
const char *pset, MPI_Group *group);

IN session session used
IN pset name of process set to create group from
OUT group newly created group

Differences to MPI-4.0 draft: No differences.

MPI_Group_from_session_pset is used to create a new group containing the pro-
cesses in the process set with the name passed in the pset argument. If an error occurs,
group will be set to MPI_GROUP_EMPTY and a non-zero return value are returned.

int MPI_Comm_create_from_group(MPI_Group group, const char *stringtag
MPI_Info info, MPI_Errhandler errhandler, MPI_Comm *comm) ;

IN group group to create communicator from

IN stringtag dummy argument for compatibility

IN info optional hints

IN errhandler error handler that will be attached to the communicator
OUT comm newly created communicator

Differences to MPI-4.0 draft: Here, the errhandler will not be invoked on an error
in this function. The stringtag argument is ignored. Currently, no keys are
supported for the info argument.

The MPI_Comm_create_from_group function is used to construct a new communi-
cator containing the processes in the group argument. This function allows to create
communicators solely based on the group and no parent communicator is needed. It
is collective over the processes contained in the group.

In libmpidynres, this function will lock when the group argument contains a
process that is currently in the libmpidynres idle state.

According to the MPI-4.0 draft, the error handler should be invoked if an error
occurs during the function call and should be attached to the new communicator.
Due to the opaqueness of the MPI_Errhandler type, libmpidynres cannot invoke the
error handler itself. However, it will be attached to the communicator. The stringtag
argument is ignored by libmpidynres as it does not support multithreading.

42

5.4. Process Set Management Functions

5.4. Process Set Management Functions

Process Sets are created in three scenarios: When the simulated environment starts,
the process sets “mpi:/ /WORLD” and “mpi://SELF” are created. More process sets
can be created by the application by applying set operations to existing process sets.
Finally, process sets are created by libmpidynres for each resource change.

int MPIDYNRES_pset_create_op(MPI_Session session, MPI_Info hints,
const char pseti[], const char pset2[],
MPIDYNRES_pset_op op, char pset_resultl[]);

IN session session used

IN hints hints passed to runtime

IN psetl name of first argument to process set operation
IN pset2 name of second argument to process set operation
IN op operation type to apply

OUT pset_result name or resulting process set

Differences to MPI-4.0 draft: This function is not part of the MPI-4.0 draft. Process
set management is implementation defined in the MPI-4.0 draft.

In libmpidynres, the application can ask the runtime to create new process sets by
combining existing process sets. For that, the function MPIDYNRES_pset_create_op
is used. The function is not collective and should only be called by a single pro-
cess for a specific process set operation. Consequently, the call has to be coor-
dinated in the application. The arguments psetl and pset2 specify the two pro-
cess set operands of the set operations. The op argument specifies the set opera-
tion to apply. It has to take one of the following values: MPIDYNRES_PSET_UNION,
MPIDYNRES_PSET_INTERSECT, MPIDYNRES_PSET_DIFFERENCE. The resulting process set
name will be returned in the pset_result argument and has the form of “mpidyn-
res://op_" followed by a random string. Therefore, pset_result has to be able
to hold at least MPI_MAX_PSET_NAME_LEN characters. The hints argument currently
supports the key mpidynres_proposed_name which can be used to ask the resource
manager to name the new process set by the given value. If the process set operation
fails, a string of zero length will be placed in pset_result.

The process set operation mechanism is useful for querying and creating communi-
cators that combine process sets directly through a new process set. This process name
can be shared by the application by message passing. For example, the application
shown in Chapter 6 uses process set operations to combine resource change process
sets with the process set that contains all other active ranks to create a new process
set containing all active processes including the new, dynamically created ones.

43

5. Library Interface

An alternative interface design could consist of creating communicators by combin-
ing MPI groups with existing MPI functions (MPI_Group_union, MPI_Group_intersection,
MPI_Group_difference) together with MPI_Comm_create_from_group. Additionally,

a function for creating process sets from MPI groups would be necessary to ease the
creation and usage of the same communicator on future processes. Future work could
try to implement this interface.

int MPIDYNRES pset_free(MPI_Session session, char pset[]);

IN session session used
INOUT pset the name of the process set to be freed

Differences to MPI-4.0 draft: This function is not part of the MPI-4.0 draft. Process
set management is implementation defined in the MPI-4.0 draft.

This function can be used to explicitly free a process set. Note that process sets are
freed implicitly by libmpidynres once one of the processes that is part of the process
set exits. Communicators based on the process set given in the pset argument stay
valid as long as all processes are in the libmpidynres active state.

The MPIDYNRES_pset_free function is not collective and should only be called by
one process to free a specific process set.

5.5. Resource Change Management Functions

Resource Changes are proposed by the runtime and have to be accepted by the
application. The application can query for new resource changes. A new resource
change will then be exposed as a new process set. Process set operations can be
applied on the new process set to create common communicators. Before accepting
the resource change, the application has time to clean up and rebalance its workload.

In libmpidynres, resource change function call will be sent to the resource manager
which then calls the scheduler_mgmt.h interface which then does scheduling deci-
sions (see 4.3.4). This design allows for easy extension of libmpidynres by creating
new scheduling mechanisms.

It is important to note that the resource change related functions are not collective
and should be only invoked by a single process for a specific resource change.

44

5.5. Resource Change Management Functions

int MPIDYNRES_add_scheduling hints(MPI_Session session,
MPI_Info hints, MPI_Info *answer);

IN session session used
IN hints hints passed to the scheduling component of libmpidynres
OUT answer optional answer by scheduling component

Differences to MPI-4.0 draft: This function is not part of the MPI-4.0 draft.
Resource change management is not specified in the MPI-4.0 draft.

This function can be used to give the scheduling part of the runtime clues with the
hints argument. This can be used to dynamically change scheduling parameters or
notify the scheduler about resource requirements. The latter aspect allows libmpi-
dynres to adapt dynamically to the resource requirements of the application. To keep
the interface general purpose, an arbitrary info object can be sent back as an answer
by the scheduler. Note that the answer can also be MPI_INFO_NULL.

The included scheduling implementations (see Section 4.3.4) currently do not
support this currently. Application-provided resource requirements can be part of
future work of libmpidynres.

Both info objects have to be freed by the application if they are not equal to
MPI_INFO_NULL.

7

int MPIDYNRES_RC_get (MPI_Session session,
MPIDYNRES_RC_type *rc_type, char delta_pset[],
MPIDYNRES_RC_tag *tag, MPI_Info *info);

IN session session used

OUT rc_type type of resource change

OUT delta_pset name of the new resource change process set

OUT tag identifier for the resource change

OUT info optional additional information about the resource change

Differences to MPI-4.0 draft: This function is not part of the MPI-4.0 draft.
Resource change management is not specified in the MPI-4.0 draft.

The MPIDYNRES_RC_get function is used to query for a resource change. It should
be called by the application on a regular basis, e.g., during each loop iteration. It is
not collective and should only be called by one process at a time.

There are multiple values returned by the runtime. The rc_type return value
will tell the application what kind of resource change is about to happen (one of
MPIDYNRES_RC_NONE, MPIDYNRES_RC_ADD, MPIDYNRES_RC_SUB).

45

5. Library Interface

If the type is not equal to MPIDYNRES_RC_NONE, there are further return values. The
delta_pset return value will contain the name of the resource change process set. In
the case of resource removal, it will contain the processes that are currently active
and part of the application that will need to shut down. In the case of resource
addition, it will contain the processes that will be started once the resource change
is accepted. The tag return value is used as an identifier for the resource change
and has to be passed to the MPIDYNRES_RC_accept function. The info argument
can hold additional information from the scheduler about the resource change. In
the two example schedulers provided by libmpidynres this value will always be
MPI_INFO_NULL. Future use cases of this object could be to pass information about
the reason or trigger for the resource change. If a previous resource change accept is
still pending or there are processes that should be removed and have not exited yet
the function will return MPIDYNRES_RC_NONE. The info return value has to be freed
by the application if it is not equal to MPI_INFO_NULL.

int MPIDYNRES_RC_accept(MPI_Session session, MPIDYNRES_RC_tag tag,
MPI_Info info);

IN session session used
IN tag identifier of the resource change to accept
IN info runtime hints and hints for newly created processes

Differences to MPI-4.0 draft: This function is not part of the MPI-4.0 draft.
Resource change management is not specified in the MPI-4.0 draft.

. J

The MPIDYNRES_RC_accept function is used to accept a resource change. Before
calling this function, the application should make sure that important load balancing
steps have taken place and in the case of resource removal, the processes that need
to shut down are about to shut down. In the case of resource addition, the new
processes will be started once this function is called.

The tag argument should contain the rc_tag returned by the MPIDYNRES_RC_get
function. The info argument can contain hints for the scheduler. Furthermore, in
the case of resource addition, the key-value pairs passed in the info object will be
available for newly started processes when calling MPI_Session_get_info. This is
crucial for process coordination as important information concerning the application
state and process set names for communication can be passed that way.

46

6. Application Demonstration

In this chapter, an example application is shown that uses the libmpidynres library
to handle resource changes. The example application is based on a simple loop where
a check for resource changes takes place during each iteration. The code is divided
into multiple snippets of C code with a short explanation underneath each. Note
that for readability, error checking has been omitted. This example application can
be found in the src/examples directory and is named 07_simple_changes. A more
complex version with error checking can be found in the same directory under the
name 06_resource_changes.

The general idea of the application is to have all available processes together
in a common communicator. The work is then split between the processes in the
communicator. If resources are added, the application uses a union operation to
combine the current main process set with the new delta process set. If resources are
removed, the application uses a difference operation to remove the processes from
the delta set from the main set. Then, a new communicator can be created from the
resulting process set.

When accepting a resource change, the name of the main process set and application-
specific information will be passed to libmpidynres. Newly spawned processes can
then access the information and construct the main communicator.

Process set operations and resource change functions are called by rank 0 in the
main communicator. The results of these function calls are broadcasted to the other
processes of the communicator.

47

6. Application Demonstration

Globals

MPI_Session session; // session object

MPI_Comm main_comm; // the communicator where all the work happens
int main_rank; // rank in main_comm
int main_iter; // current application iteration

char main_pset [MPI_MAX_PSET_NAME_LEN] ;

// return whether info object contains key
bool info_contains(MPI_Info info, const char xkey);

The application will keep track of its current state in global variables. These
variables contain information about the current loop iteraton (main_iter) and the
current communicator used (main_comm, main_rank, main_pset)

The function info_contains returns a boolean value indicating whether the string
key is contained in the info argument. Its implementaton is omitted here.

Main Communicator Creation

void update_main_comm() {
MPI_Group mygroup;
MPI_Group_from_session_pset(session, main_pset, &mygroup);
MPI_Comm_create_from_group (mygroup, NULL, MPI_INFO_NULL,
< MPI_ERRORS_ARE_FATAL, &main_comm);
MPI_Comm_rank(main_comm, &main_rank) ;
MPI_Group_free(&mygroup) ;

The update_main_comm function is used to create a new communicator once
main_pset has changed. The function uses the MPI Sessions mechanism to cre-
ate a group from a process set name and then a communicator from that group. As
the functions for this mechanism are collective, the update_main_comm function is
collective aswell.

The function is called once when a process is initializing and once for every resource
change.

48

Main Loop

int application_entry(int argc, char *argv[]) {
bool need_to_break = false;

initialization_phase();

for (; main_iter < 1000 &% 'nmeed_to_break; main_iter++) {
work_step();
resource_changes_step(&need_to_break) ;

rebalance_step();

}

finalization_phase();

return EXIT_SUCCESS;

This function is the entry point passed to libmpidynres as described in Section
4.1.1.

It is divided into multiple phases. At the beginning, the MPI Sessions envi-
ronment, the global state and application specific variables are initialized in the
initialization_phase. At the end, these variables are freed in the finalization_phase.

In between, the main loop is run. In this example, the main loop uses 1000 iterations.
During each iteration, the following steps are being executed:

* work step: Here, application specific work and MPI communication takes place.
This function is application specific and its implementation is omitted here.

* resource change step: In this step, resource changes are queried and handled. If
the current process needs to be removed for a resource change, the variable
need_to_break is set. A closer look on this step is taken below.

* rebalance step: After the number of processes has changed, the application may
need to rebalance its workload. This happens here. The implementation of this
step is also omitted here.

49

6. Application Demonstration

Initialization & Finalization Phases

void initialization_phase() {
MPI_Info session_info, psets;
int unused;
char main_iter_buf [0x20];

MPI_Session_init (MPI_INFO_NULL, MPI_ERRORS_ARE_FATAL, &session);
MPI_Session_get_psets(session, MPI_INFO_NULL, &psets);

if (info_contains(psets, "mpi://WORLD")) {
strcpy(main_pset, "mpi://WORLD");
main_iter = 0;

} else {
MPI_Session_get_info(session, &session_info);

MPI_Info_get(session_info, "app_main_pset", MPI_MAX_PSET_NAME_LEN - 1,
— main_pset, &unused);

MPI_Info_get(session_info, "app_main_iter", 0x20 - 1, main_iter_buf,
< &unused) ;

main_iter = atoi(main_iter_buf);

MPI_Info_free(&session_info);

}

// create main_comm from main_pset (collective!)
update_main_comm() ;

// application specific initialization/load balancing here

MPI_Info_free(&psets);

In the initialization phase, the process needs to find out if the process invocation has
been dynamic (based on a resource change) or initial (invoked with the application
start). For this, the process queries its process sets and checks whether its part
of “mpi://WORLD”. In the case of the initial invocation, the “mpi://WORLD”
process set is used as the main process set and the main_iter variable is set to
zero. If it is a dynamic process start, the session information is queried with the
MPI_Session_get_info function. In libmpidynres, the returned info object will hold
keys passed by the application to the MPIDYNRES_RC_accept. In this way, the process
can find out the current loop iteration and the current main process set.

Once main_pset has been set, update_main_comm is used to create a communicator
from main_pset.

After the initializtion phase, the process has a communicator that connects all active
processes of the application. The process also knows at which loop iteration the
application is.

50

void finalization_phase() {
// application specific cleanup here

// cleanup
MPI_Comm_free(&main_comm) ;
MPI_Session_finalize(&session);

The finalization phase is used for application specific cleanup and to free MPI

objects.

51

6. Application Demonstration

Resource Change Step

void resource_changes_step(bool *need_to_break) {
int rc_tag;
MPIDYNRES_RC_type rc_type;
char delta_pset[MPI_MAX_PSET_NAME_LEN];

MPI_Barrier (main_comm) ;

fetch_resource_changes(&rc_tag, &rc_type, delta_pset);

handle_resource_changes(rc_type, delta_pset, need_to_break) ;

accept_resource_change(rc_tag) ;

if (rc_type != MPIDYNRES_RC_NONE && !*need_to_break) {
update_main_comm() ;

The resource change step can be subdivided into three steps:

e fetch_resource_changes: In this step, the application queries for a new resource
change. A new resource change process set will be created (the delta_pset
variable) and a resource change type will be returned.

* handle_resource_changes: In this step, the new resource change will be handled.
The next main_pset is created by combining the current main_pset with the
delta_pset.

* accept_resource_changes: Finally, the resource change is accepted and processes
that need to shutdown break the main loop and new processes are started.

After these steps, the main_pset may have changed. Because of that, a new
communicator is created with a call to update_main_comm. This call will be collective
over the active processes and the newly started resources in the case of resource
addition.

void fetch_resource_changes(int *rc_tag, MPIDYNRES_RC_type *rc_type,
char delta_pset[]) {
MPI_Info rc_info;

if (main_rank == 0) {
MPIDYNRES_RC_get(session, rc_type, delta_pset, rc_tag, &rc_info);
if (rc_info !'= MPI_INFO_NULL) {
MPI_Info_free(&rc_info);
}
}
MPI_Bcast(rc_type, 1, MPI_INT, O, main_comm);
MPI_Bcast(rc_tag, 1, MPI_INT, O, main_comm) ;
MPI_Bcast(delta_pset, MPI_MAX_PSET_NAME_LEN, MPI_CHAR, O, main_comm) ;

52

In the fetch_resource_changes step, rank 0 will query libmpidynres for resource
changes. These resource changes will then be broadcasted to the other ranks.

void handle_resource_changes (MPIDYNRES_RC_type rc_type, char delta_pset[],
bool *need_to_break) {
MPI_Info mypsets;

switch (rc_type) {
case : {
if (main_rank == 0) {
MPIDYNRES_pset_create_op(session, MPI_INFO_NULL, main_pset,
— delta_pset, MPIDYNRES_PSET_UNION, main_pset);

}
MPI_Bcast(main_pset, MPI_MAX_PSET_NAME_LEN, MPI_CHAR, O, main_comm) ;
break;
}
case : {
if (main_rank == 0) {

MPIDYNRES_pset_create_op(session, MPI_INFO_NULL, main_pset,
— delta_pset, MPIDYNRES_PSET_DIFFERENCE, main_pset);

}
MPI_Bcast(main_pset, MPI_MAX_PSET_NAME_LEN, MPI_CHAR, O, main_comm) ;

MPI_Session_get_psets(session, MPI_INFO_NULL, &mypsets);

if (!info_contains(mypsets, main_pset)) {
*need_to_break = true;

}

MPI_Info_free(&mypsets);
break;

}

case MPIDYNRES_RC_NONE {
break;

}

}
}

The handle_resource_changes step depends on the type of resource change. In
this code, a switch-case statement is used to change the behavior based on the type.
In the case of an addition of resources, a new process set is created by constructing
the union set of both the current main process set and the resource change set. In the
case of a resource removal, a new process set is created by constructing the difference
set of the current main process set and the resource change set. Furthermore, for
resource removal, each process checks whether it is part of this new difference set. If
not, the process will have to be removed. In that case, the variable need_to_break is
set.

53

6. Application Demonstration

void accept_resource_change (MPIDYNRES_RC_tag rc_tag) {
if (main_rank == 0) {
MPI_Info new_processes_info;
char buf [0x20];
MPI_Info_create(&new_processes_info);
MPI_Info_set(new_processes_info, "app_main_pset", main_pset);
snprintf (buf, Ox1f, "%d\n", main_iter);
MPI_Info_set(new_processes_info, "app_main_iter", buf) ;
// more application specific keys can be set here

MPIDYNRES_RC_accept(session, rc_tag, new_processes_info);

MPI_Info_free(&new_processes_info);

Finally, in the accept_resource_change step, the MPIDYNRES_RC_accept function
is called by rank 0 of the main communicator. An info object containing the current
application iteration and the next main process set is passesd to this function meaning
it will be available for newly created processes during the initialization phase.

54

7. Conclusion

7.1. Summary

A new interface for dynamic resource changes using the process set concept of MPI
Sessions was presented. Using MPI, a C library was implemented to provide a
simulated dynamic resource environment in which applications can use this interface.
Due to the library acting as an additional layer between MPI and the application,
it is portable and can be used on any valid MPI implementation. The library also
provides a simple interface for creating new scheduling mechanisms which helps in
testing the resource adaptivity of applications in different scenarios. Two scheduler
implementations are included in this work.

To help programmers use this new C library, multiple examples are included
providing an incremental introduction into features of libmpidynres. Furthermore,
the library provides additional debugging features to help programmers locating
their implementation errors.

A parallel loop based application was presented in this work that successfully uses
the new interface to query and apply new resource changes. At the same time, the
application makes sure that all processes stay connected and coordinated. Also, the
library exposes the MPI Sessions API to the example application. The application can
create and finalize sessions, query session info and manage and use process sets.

7.2. Future Work

This work only contains a proof-of-concept library. To integrate dynamic resources
into supercomputers, support has to be added to all layers of the MPI runtime stack.

Also, more work must be done on the MPI Sessions interface, especially in regard
to multiple sessions in the same application and to process set logic. Should there be
a distrinction between static or dynamic process sets? Does the current interface for
querying process sets make sense?

Finally, libmpidynres can be further extended and used to experiment with the
MPI Sessions interface. Multiple application support and a multithreaded resource
manager are possible extensions for the future.

55

A. Build Instructions and Usage

A.1. Building and Installation

Please make sure that you have the source code of libmpidynres available. It should
be contained in a directory called 1ibmpidynres with a Makefile and a src subdirec-
tory. Also, make sure that your system meets the following requirements:

¢ It is running a unix-like operating system (with posix shell utilities and a
FHS-compatible filesystem).

e An MPI library and an MPI compiler (ideally Open MPI) are installed.
* The software package rsync is installed.

¢ The software package make is installed (tested with gnumake).

Before building libmpidynres, take a look at the variables set at the beginning of
the Makefile and adjust them to your liking (for example adjust the INSTALL_PREFIX
variable to change the installation root).

To build libmpidynres, run:

$ make

This will install the file 1ibmpidynres.so into the build/1ib directory and the
headers into the build/include directory.
To install libmpidynres, run:

$ make install
This will install the following files:
* $INSTALL_PREFIX/lib/libmpidynres.so
® $INSTALL_PREFIX/include/mpidynres.h

e $INSTALL_PREFIX/include/mpidynres_sim.h

To update libmpidynres, run the same steps as above with newer source code. To
remove libmpidynres from your system, delete the listed files manually.

57

A. Build Instructions and Usage

A.2. Documentation, Tests and Examples

Documentation

To build the documentation, make sure to have doxygen installed. You can build the
documentation by running:

$ make docs

This will install an HTML and a Latex version of the documentation into the doc
folder. You can run

$ make viewdocs

to open the HTML version in firefox.

Tests

There are two unit tests for the serialization of the MPI_Info object. These can be
found in the tests subdirectory.
To build the tests, run:

$ make tests
To run the tests, run:

$ make test

Examples

Multiple examples are included in the examples subdirectory. These illustrate how to
use the library in an application.
To build the examples, run:

$ make examples

The example binaries are placed in the build/examples directory.

58

A.3. Usage and Debugging

A.3. Usage and Debugging

The examples illustrate how an application can use the interface provided by libmpi-
dynres. Chapter 5 describes each function available inside the simulated runtime.
Before building your application, make sure you have installed the library into your
system at a location where your MPI compiler can find it.

Two scheduling implementations are shipped with the libmpidynres source code.
These can be found in the src/managers directory and are futher explained in Section
4.34.

To use the increasing-decreasing scheduler, run

$ 1n -sv managers/inc_dec_manager.c scheduler_mgmt.c

in the src directory.
To use the random-difference scheduler, run

$ 1n -sv managers/inc_dec_manager.c scheduler_mgmt.c

in the src directory. The -f flag can be added to overwrite an existing symlink.

If your application is contained in a C file called application.c you can compile it
with the following command:

$ mpicc <COMPILER OPTIONS> application.c -o application -lmpidynres
Now you can run your application by issuing:
$ mpirun <MPIRUN_OPTIONS> ./application

Refer to the manual of mpirun for possible options.

By setting the environment variable MPIDYNRES_DEBUG before the application start,
libmpidynres will output colorful debug output to stderr. By setting the environ-
ment variable MPIDYNRES_STATELOQG to a filename, libmpidynres will output a log of
the process states to the filename provided. These features are also explained further
in Section 4.5.1.

59

Bibliography

[1]

2]

[3]

4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L.
Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G.
Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan,
B. E. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page. https :
//www.mcs.anl.gov/petsc. 2019.

G. E. P. Box and M. E. Muller. “A Note on the Generation of Random Normal
Deviates.” In: The Annals of Mathematical Statistics 29.2 (1958), pp. 610-611. por:
10.1214/aoms/1177706645.

C. Burstedde, L. C. Wilcox, and O. Ghattas. “p4est: Scalable Algorithms for
Parallel Adaptive Mesh Refinement on Forests of Octrees.” In: SIAM Journal on
Scientific Computing 33.3 (2011), pp. 1103-1133. por: 10.1137/100791634.

S. Chakraborty. “Job Startup at ExaScale: Challenges and Solutions.” In: Sept.
2016.

ClangFormat — Clang 12 documentation - LLVM. https://clang.1llvm. org/
docs/ClangFormat.html.

I. Comprés, A. Mo-Hellenbrand, M. Gerndt, and H.-J. Bungartz. “Infrastructure
and api extensions for elastic execution of mpi applications.” In: Proceedings of
the 23rd European MPI Users” Group Meeting. 2016, pp. 82-97.

T. M. Forum. “MPI: A Message-Passing Interface Standard Version 1.3.” In: May
2008.

T. M. Forum. “MPI: A Message-Passing Interface Standard Version 2.2.” In:
Sept. 2009.

T. M. Forum. “MPI: A Message-Passing Interface Standard Version 3.1.” In:
June 2015.

T. M. Forum. “MPIL: A Message-Passing Interface Standard Version 4.0 (Draft).”
In: Nov. 2020.

GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/.

G. Geist, J. A. Kohl, and P. M. Papadopoulos. “PVM and MPI: A comparison of
teatures.” In: Calculateurs Paralleles 8.2 (1996), pp. 137-150.

61

https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1137/100791634
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormat.html
https://www.gnu.org/software/gdb/

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]
[26]
[27]

[28]

[29]

M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and J. Weidendorfer. “Inva-
sive computing with iOMP.” In: Proceeding of the 2012 Forum on Specification and
Design Languages. 2012, pp. 225-231.

P. GmbH. Top 500 November 2000. https://www .top500.org/lists/top500/
2000/11/. 2020.

P. GmbH. Top 500 November 2020. https://www.top500.org/lists/top500/
2020/11/. 2020.

N. W. Group. Uniform Resource Identifier (URI): Generic Syntax. RFC 3986. RFC
Editor, Jan. 2005.

D. Hans, B. Joachim, M. Zimmer, and D. Buchhol. Modeling and simulation: an
application-oriented introduction. 2013.

N. Hjelm, H. Pritchard, S. K. Gutiérrez, D.]. Holmes, R. Castain, and A. Skjellum.
MPI Sessions Open MPI Prototype. https ://github . com/hpc/ompi/tree/
sessions_new. 2021.

N. Hjelm, H. Pritchard, S. K. Gutiérrez, D.]. Holmes, R. Castain, and A. Skjellum.
“MPI Sessions: Evaluation of an Implementation in Open MPL.” In: 2019 IEEE
International Conference on Cluster Computing (CLUSTER). 2019, pp. 1-11. por:
10.1109/CLUSTER.2019.8891002.

D. Holmes, K. Mohror, R. Grant, A. Skjellum, M. Schulz, W. Bland, and]J.
Squyres. “MPI Sessions: Leveraging Runtime Infrastructure to Increase Scala-
bility of Applications at Exascale.” In: Sept. 2016, pp. 121-129. por: 10.1145/
2966884 .2966915.

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Third. Boston: Addison-Wesley, 1997. 1sBN: 0201896842 9780201896848.

Kubernetes Project Homepage. https://kubernetes. io.
G. Louw. ctl - The C Template Library. https://github.com/glouw/ctl. 2021.

Memcheck: a memory error detector. https://valgrind.org/docs/manual/mc-
manual.html.

MPI-4.0. https://www.mpi-forum.org/mpi-40/.
MPICH | High-Performance Portable MPI. https://www.mpich.org/.

Official Website of the ARM DDT Tool. https : //www . arm . com/ products /
development-tools/server-and-hpc/forge/ddt.

Official Website of the Doxygen Documentation Generator. https://www.doxygen.
nl/index.html.

Official Website of the GIT Version Control System. https://git-scm.com/.

62

https://www.top500.org/lists/top500/2000/11/
https://www.top500.org/lists/top500/2000/11/
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/
https://github.com/hpc/ompi/tree/sessions_new
https://github.com/hpc/ompi/tree/sessions_new
https://doi.org/10.1109/CLUSTER.2019.8891002
https://doi.org/10.1145/2966884.2966915
https://doi.org/10.1145/2966884.2966915
https://kubernetes.io
https://github.com/glouw/ctl
https://valgrind.org/docs/manual/mc-manual.html
https://valgrind.org/docs/manual/mc-manual.html
https://www.mpi-forum.org/mpi-40/
https://www.mpich.org/
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://www.doxygen.nl/index.html
https://www.doxygen.nl/index.html
https://git-scm.com/

Bibliography

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Open MPI source code on Github opal_progress.c. https://github.com/open-mpi/
ompi / blob / 26c136ae59e2235b1187£d3d9897498860320d68 / opal / runtime /
opal_progress.c.

OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 5.1. https://www . openmp . org/wp- content /uploads/OpenMP - API -
Specification-5-1.pdf. Nov. 2020.

T. O. M. Project. Open MPI: Open Source High Performance Computing. https :

//www.open-mpi.org/.

M. Schreiber, C. Riesinger, T. Neckel, and H. Bungartz. “Invasive Compute
Balancing for Applications with Hybrid Parallelization.” In: 2013 25th Interna-
tional Symposium on Computer Architecture and High Performance Computing. 2013,
pp- 136-143. por: 10.1109/SBAC-PAD.2013. 20.

M. Schreiber. “Cluster-Based Parallelization of Simulations on Dynamically
Adaptive Grids and Dynamic Resource Management.” PhD thesis. Technische
Universitat Munchen, 2014.

J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schroder-Preikschat,
and G. Snelting. “Invasive Computing: An Overview.” In: Multiprocessor System-
on-Chip: Hardware Design and Tool Integration. Ed. by M. Hiibner and]. Becker.
New York, NY: Springer New York, 2011, pp. 241-268. 1sBN: 978-1-4419-6460-1.
DOI: 10.1007/978-1-4419-6460-1_11.

C. The MPI Forum. “MPI: A Message Passing Interface.” In: Proceedings of the
1993 ACMY/IEEE Conference on Supercomputing. Supercomputing ‘93. Portland,
Oregon, USA: Association for Computing Machinery, 1993, pp. 878-883. 1sBN:
0818643404. por1: 10.1145/169627.169855.

Transregional Collaborative Research Centre 89 — Invasive Computing. http://
invasic.informatik.uni-erlangen.de/.

63

https://github.com/open-mpi/ompi/blob/26c136ae59e2235b1187fd3d9897498860320d68/opal/runtime/opal_progress.c
https://github.com/open-mpi/ompi/blob/26c136ae59e2235b1187fd3d9897498860320d68/opal/runtime/opal_progress.c
https://github.com/open-mpi/ompi/blob/26c136ae59e2235b1187fd3d9897498860320d68/opal/runtime/opal_progress.c
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.open-mpi.org/
https://www.open-mpi.org/
https://doi.org/10.1109/SBAC-PAD.2013.20
https://doi.org/10.1007/978-1-4419-6460-1_11
https://doi.org/10.1145/169627.169855
http://invasic.informatik.uni-erlangen.de/
http://invasic.informatik.uni-erlangen.de/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Jobs with Static Workload
	Jobs with Dynamic Workload

	Thesis Goals

	Related Work
	The Message Passing Interface
	MPI Sessions
	Global vs. Local Initialization
	Runtime Information and Process Sets

	Existing Work on Dynamic Resources
	MPI's Dynamic Process Model
	Invasive Computing

	Core Concepts
	MPI Runtime Data
	MPI's Info Object
	Computing Resource
	Process Set
	Resource Change

	Realization of the Simulation Layer
	Simulating the Runtime on top of MPI
	Application Wrapper
	Library Interfaces

	Resource Manager and Computing Resources
	Communication
	Control Flow & State Signaling

	Resource Manager Realization
	Request Handling
	Process Set Management
	Resource Change Management
	Scheduling Approaches

	Computing Resource Realization
	Session Object
	From Process Set to Communicator

	Software Development Approach
	Debugging Features of libmpidynres
	Source Code and Project Structure
	Software Tools
	Software Evaluation
	Included Examples

	Library Interface
	Environment Functions
	Process Set Discovery Functions
	Group and Communicator Functions
	Process Set Management Functions
	Resource Change Management Functions

	Application Demonstration
	Conclusion
	Summary
	Future Work

	Build Instructions and Usage
	Building and Installation
	Documentation, Tests and Examples
	Usage and Debugging

	Bibliography

